SM $H \rightarrow \gamma \gamma$ discovery potential with ATLAS

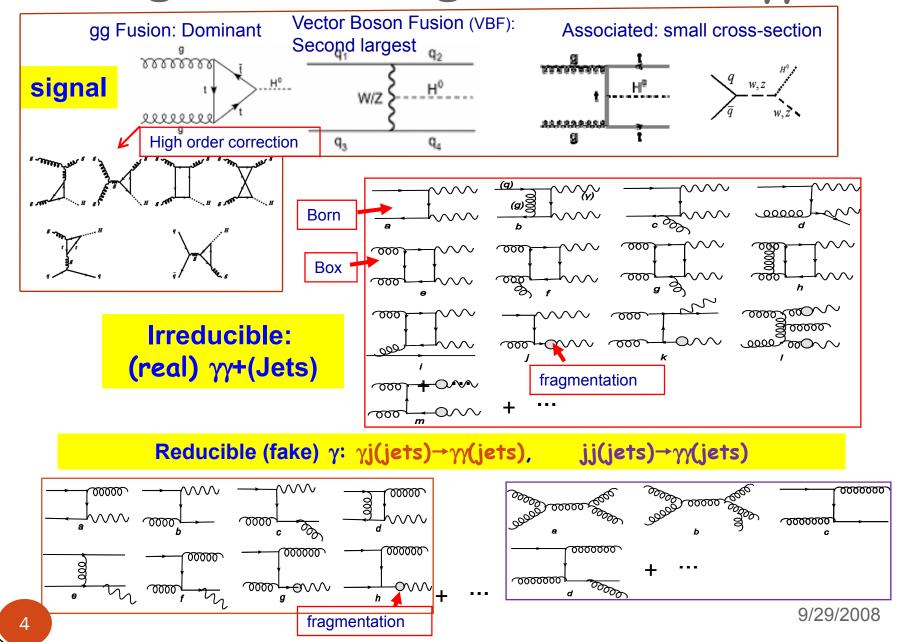
Yaquan Fang

University of Wisconsin, Madison

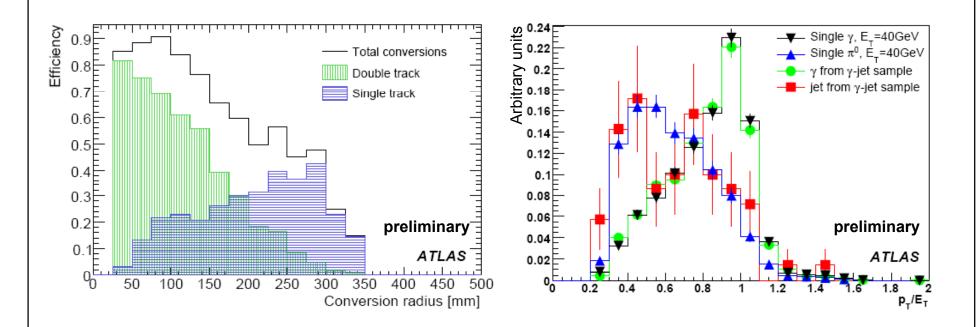
On Behalf of the ATLAS Collaboration Physics at LHC 2008

Outline

- I. Introduction
- II. Experimental requirements
- III. Analysis strategies and results
- IV. Conclusions


Introduction

- Motivation for SM $H \rightarrow \gamma \gamma$
 - Sensitive at low Higgs mass region: $114 < M_H < 150 GeV$.
 - Robust : side band.
- What is new?
 - Simulation/reconstruction:
 - More realistic simulation.
 - Massive production of MC samples for the Computing System Commissioning (CSC) since 2006.
 - QCD higher order corrections in MC.
 - Signal and background processes' cross-sections known to NLO.
 - Contributions of reducible backgrounds' fragmentation from hard partons to photons are taken into account.
 - Updated analysis strategies:
 - Inclusive vs Combined analysis (H+0jet, 1jet and 2jets).
 - One variable $(M_{\gamma\gamma})$ vs additional variables $(P_{T\gamma\gamma})$ and $\cos \Theta_{\gamma}^*$.
 - Significance: Event counting vs maximum likelihood fit based.


Main Experimental Issues

- Need good energy and angular resolution to achieve
 - ~1% resolution in Higgs mass reconstruction
 - Photon Calibration energy scale and resolution
 - Separation of converted and unconverted photons
 - Photon angle correction
 - Photon angle from calorimeter pointing and tracking-based vertices
- Need good photon identification to reject the large QCD background
 - Rejection larger than 10³ per single jet with photon efficiency larger than 80%.

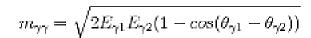
Signal and Backgrounds for $H \rightarrow \gamma \gamma$

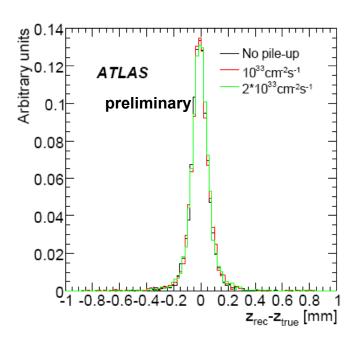
Photon Conversion

- Around 50% selected H→γγ events have at least one true conversion with a radius smaller than 80 cm.
- An algorithm tagging early converted photons based on reconstructed single/double tracks has a high tagging efficiency for those photons (left plot).
- P_T/E_T (right plot) provides additional discriminating power between selected converted photons and those from π^0 .

Calibration and vertex correction for Photons

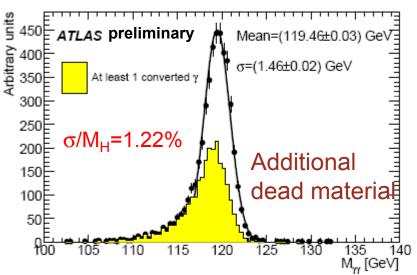
Calibration


• Longitudinal weights calibration:

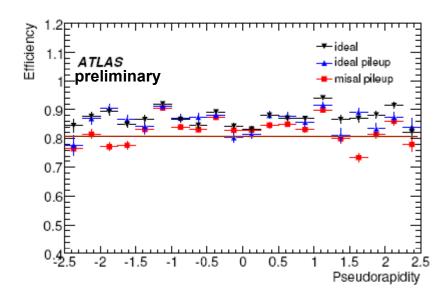

$$E_{rec} = s(b + W_0 E_{pres} + E_1 + E_2 + W_3 E_3)$$

- 3x5 cluster for unconverted photon
- 3x7 cluster for converted photon
- Refined energy correction
 - Lateral leakage and ϕ/η modulation
- Refined position correction:
 - S-shape (η correction) and Phi-offset

Vertex correction


- Precise measurement of Z vertex is very important to improve the Higgs mass resolution.
- Method: a linear fit of multi-layer centers of the EM shower + event vertex
 - The best Higgs boson position accuracy is achieved, with a Gaussian width 0.07 mm (see plot).
 - A likelihood method is used to distinguish the hard scattering vertices from pile-up vertices.

Results of calibration and vertex correction


ATLAS preliminary

m _H	120 GeV		130 (GeV	140 GeV		
	No pileup pileup		pileup No pile up pileup		No pileup pileup		
Mass fitted (GeV)	119.46	119.47	129.47	129.41	139.41	139.41	
$\sigma_{\rm m}$ (GeV)	1.46	1.52	1.54	1.62	1.66	1.69	

- The reconstructed mass peaks for geometries with nominal and additional dead material are shown.
- $\triangleright \sigma/M_H$ is close to 1.2%, degrading by a few percent with 10^{33} s⁻¹cm⁻² pileup.

Photon ID and jet rejection

- Three photon id methods:
 - Cut based (current analysis)
 - Likelihood ratio algorithm
 - H-Matrix method

ATLAS preliminary

	All	quark-jet	gluon-jet
Rejection (before isolation)	5070±120	1770±50	15000±700
Rejection (after isolation)	8160±250	2760±100	27500±2000

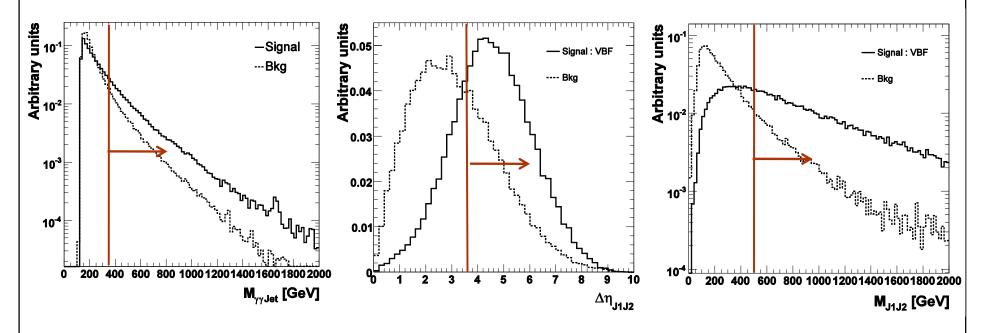
- ➤ Rejection of gluon-initiated jets is much higher than that of quark-initiated jets.
- \triangleright After photon identification, the fake photons are dominated by π^0 .

Cuts for Analyses

Trigger and photon reconstruction identification, calibration (vertex correction) are applied beforehand

Inclusive/H+0jet

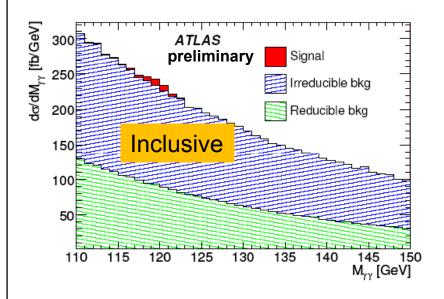
H+1jet


1	P _{Τγ1} >40 GeV, P _{Τγ2} >25 GeV
2	Mass Window(±1.4σ)

1	P _{τγ1} >45 GeV, P _{τγ2} >25 GeV
2	P _{TJ1} >20 GeV, η _{j1} <5.0
3	M _{γιj} >350 GeV
4	Mass Window(±1.4σ)

H+2jets (VBF)

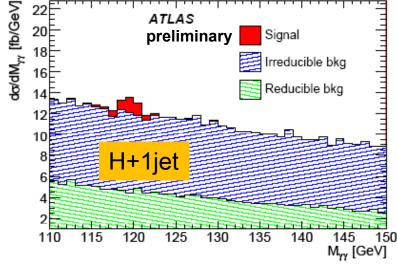
1	P _{Τγ1} >50 GeV, P _{Τγ2} >25 GeV
2	η _{J1} • η _{J2} <0, P _{TJ1} >40 GeV, P _{TJ2} >20 GeV,∆η _{j1j2} >3.6
3	Photons in between tagging jets
4	M _{J1J2} >500 GeV
5	Central jet veto (P _{TJ} >20 GeV η <3.2)
6	Mass window (±1.4σ)

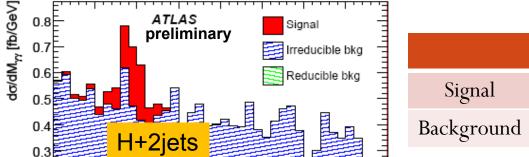

Discriminating variables

- $ightharpoonup M_{\gamma\gamma iet}$ (left plot) is used in H+1jet analysis.
- $\triangleright \Delta \eta_{J1J2}^{\prime\prime\prime}$ (middle plot) and M_{J1J2} (right plot) are for H+2jets analysis.
- ➤ The cuts of those variables can be optimized with data.

Results of Inclusive, H+1jet, H+2jet (VBF)

M_H=120GeV




0.2

115

120

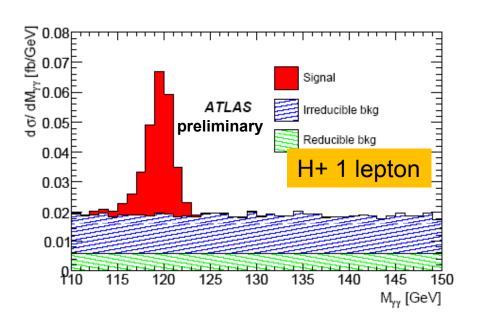
125

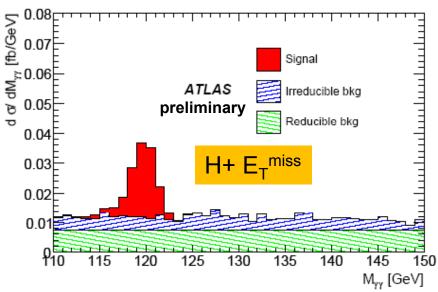
140

M_{γγ} [GeV]

130

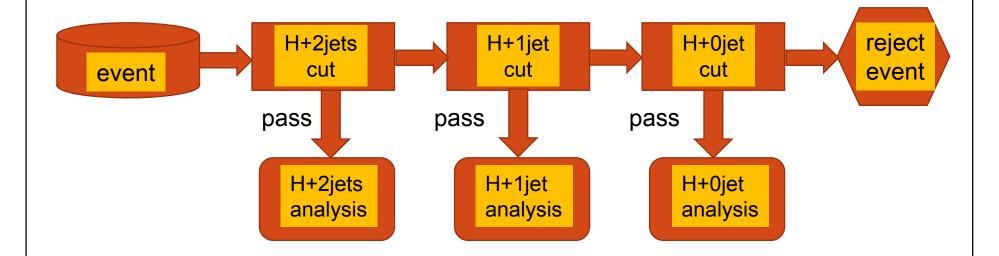
Cross-section (unit fb) with ±1.4σ after analyses cuts


ATLAS preliminary


	Inclusive	H+1jet	H+2jet
Signal	25.4	4.0	0.97
Background	929	49	1.95

- ➤ The analyses have various sensitivities.
- ➤ Inclusive analysis has well defined side-band.
 - ■Robust in extrapolating background shapes.

In addition: H+E_T miss and H+ 1 lepton from associated production


$$M_H = 120 GeV$$

- The signal for Higgs+missing E_T and Higgs+1 lepton is mostly from ttH($\rightarrow \gamma \gamma$) and W/ZH.
- Background mostly from W+ $\gamma(\gamma)$, $tt(bar)+\gamma(\gamma)$, $Z+\gamma\gamma$ and $\gamma\gamma$
- Reducible backgrounds (γ -jets, jets) are negligible.

Combined analysis for H+0jet, 1jet and 2jets

- ➤ Events passed inclusive cuts are divided into (H+0jet,1jet,2jets) sub-channels:
 - •All events from the inclusive analysis are used, and each is used only once
- ➤ Take advantage of the different sensitivities from three individual sub-channels.

Signal significances (from event counting) for an integrated luminosity of 10 fb⁻¹

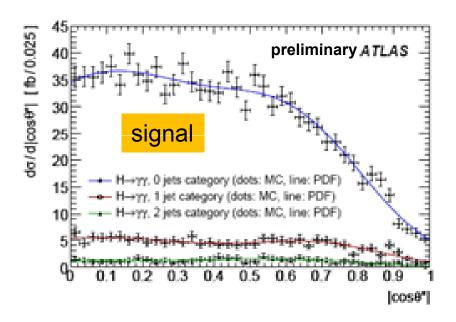
ATLAS preliminary

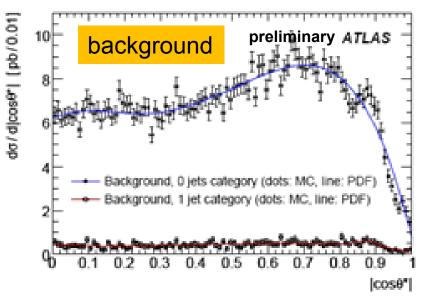
	Analysis						
$m_H [{\rm GeV}]$	Inclusive	Combined					
120	2.6	1.8	1.9	3.3			
130	2.8	2.0	2.1	3.5			
140	2.5	1.8	1.7	3.0			

- The mass window is $\pm 1.4\sigma_{\gamma\gamma}$.
- Combined significance obtained as the sum in quadrature of H+0jet (not inclusive), H+1jet, H+2jets.
- The combined significance is \sim 25% higher than the significance of the inclusive analysis.

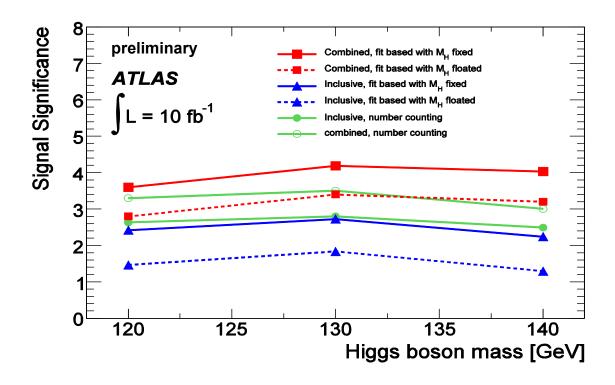
Signal significance computation with maximum likelihood fit

Fit variables: $M_{\gamma\gamma}$, $P_{T\gamma\gamma}$, $cos(\Theta_{\gamma}^{*})$ (relatively low correlations).


Based on RooFit


Classification 1: three η categories for photons in order to group photons with

similar $M_{\gamma\gamma}$ resolutions together.


Classification 2: classify three jet categories (H+0jet, H+1jet, H+2jets).

Combination of different classifications and discriminating variables is obtained by doing a single simultaneous fit

Signal significances with mass scan

- ➤ The gain in significance obtained by doing a combined fit (including three fit variables and different classifications) is ~40% with respect to the inclusive analysis (for 10 fb⁻¹).
- \triangleright For a fixed Higgs mass fit, the 5 σ discovery can be achieved with \sim 20 fb⁻¹.
- > For the fit with Higgs mass floating, the 5σ discovery can be expected with ~ 30 fb⁻¹.
 - ☐ The unknown location of the resonance reduces the expected sensitivity.

Conclusions

- The impact of detector performance on $H \rightarrow \gamma \gamma$ channel has been studied:
 - Our current knowledge of the detector allows us to achieve the performance required for this analysis.
 - Extensive work is needed to understand the detector performance with early data.
- The inclusive study has been readdressed,
 - The H+1jet, H+2jets have been studied,
 - H+1lepton and $H+E_T^{miss}$ are investigated.
- The combined analysis for H+0jet, 1jet and 2jets has been proposed and the improvement of significance is about 25% wrt the inclusive one.
- Significance studies have been done using also maximum likelihood fit with various event classifications and discriminating variables.
 - Enhance the significance ~40% wrt the inclusive one.
 - It is possible to have 5σ discovery with integrated luminosity 20-30 fb⁻¹.

Trigger for $H \rightarrow \gamma \gamma$

- Level 1:calorimeter which pass Region of Interest (ROI) data to Level 2.
- Level 2: refine the analysis of LVL1 across different detectors.
- Level 3: analysis data in the full detector and do more complicated physics analysis.

The efficiency on $H\rightarrow\gamma\gamma$ normalized wrt kinematic cuts.

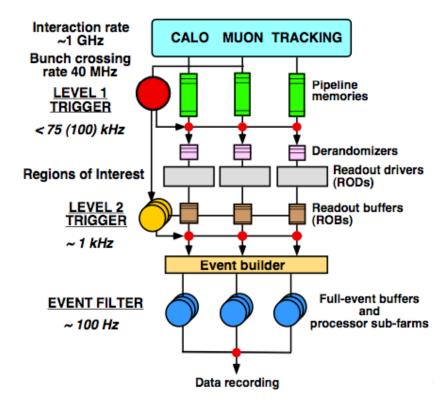


Table 7: Efficiency for the 2g17i menu item to trigger on $H \to \gamma \gamma$ events with $m_H = 120$ GeV, normalized with respect to the offline selections.

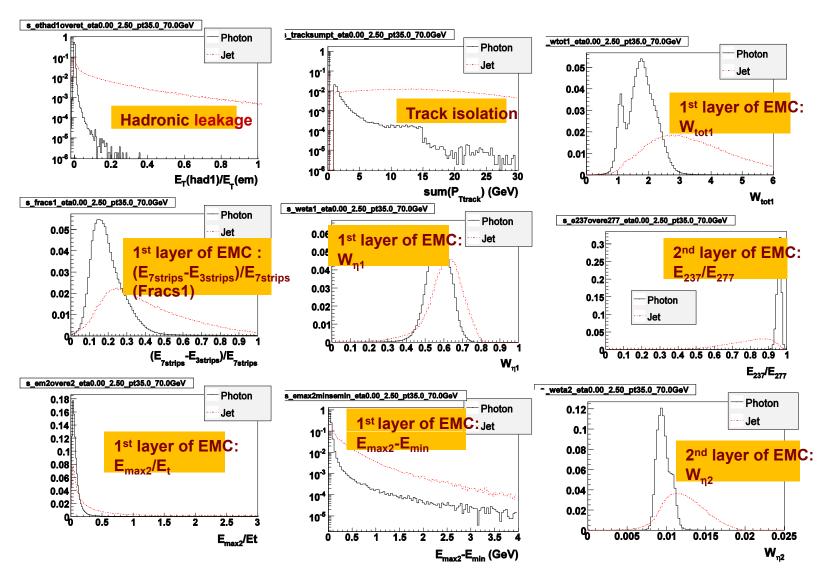
Trigger Level	2g17i Trigger efficiency
L1	96±0.3
L2 Calo	95±0.4
EF Calo	94±0.4

Summary of MC's and initial cross-sections for different signals and backgrounds

- Signal: the cross-section unit is pb.
- \triangleright the branching ratio is corrected from HDecay (2×10⁻³ for M_H=120GeV).
- ➤ All signal cross-sections are normalized to the NLO cross-sections taking into account only QCD corrections.

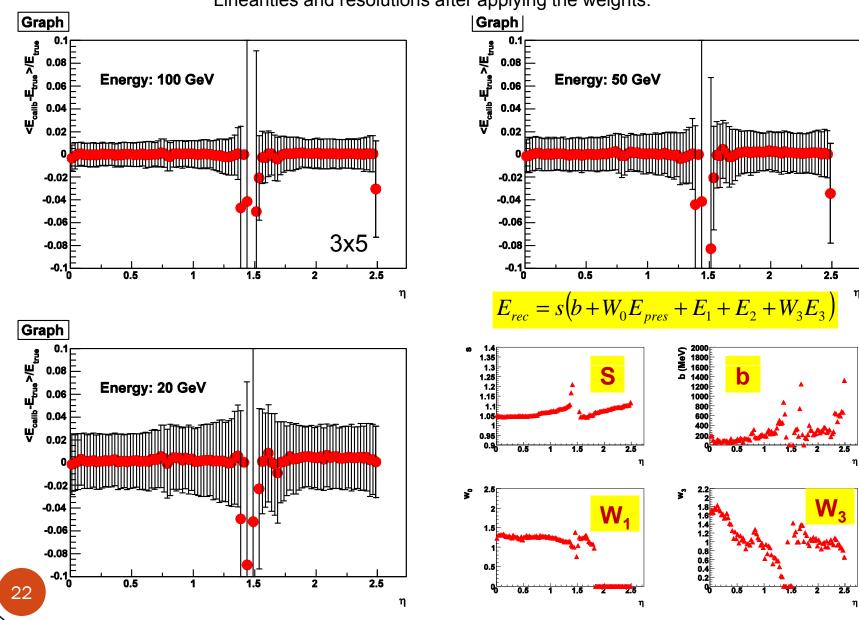
	m_H	gg Fusion		V.	BF	WH		ZH		ttH	
σα	alculator	HIGLU		VV2H		V2HV		H2HV		HQQ	
Genera	tor (fullsim)	MC@NLO		PY	THIA PYTHIA		PYTHIA		PYTHIA		
		LO	NLO	LO	NLO	LO	NLO	LO	NLO	LO	NLO
	120	20.170	36.506	4.25	4.47	1.4140	1.7351	0.7517	0.9210	0.537	0.669
	130	17.491	31.763	3.93	4.13	1.0949	1.3463	0.5852	0.7185	0.428	0.534
	140	15.314	27.858	3.63	3.81	0.8600	1.0612	0.4617	0.5688	0.345	0.431

- > ResBos and DIPHOX agreement better than 10%.
- For γj: $\sigma_{\text{JETPHOX}}/\sigma_{\text{PYTHIA}} \sim 2.1$

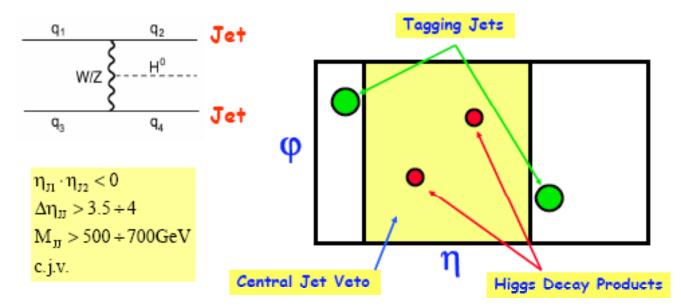

\triangleright For ii: $\sigma_{\text{NII}} = \frac{1.3}{2}$

ATLAS preliminary

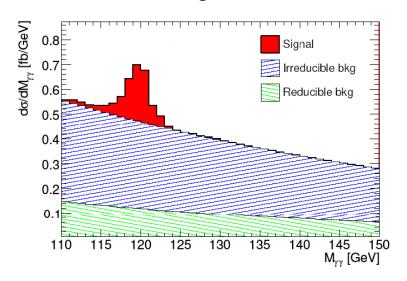
_	. M. ANTONE	I, OPYTHIA				
	Process	σ calculator	Cuts	$\sigma(pb)$	Full simulation	Fast simulation
					# of events	# of events
	$q\overline{q},qg \rightarrow \gamma\gamma x$	ResBos/	$80 < m_{\gamma\gamma} < 150 \text{ GeV}$	20.9	PYTHIA/ALPGEN	ALPGEN
		DIPHOX	$p_{T\gamma}>25\mathrm{GeV}, \eta <2.5$		200000/1300000	1670000
	$gg ightarrow \gamma \gamma$	ResBos	$80 < m_{\gamma\gamma} < 150 \text{ GeV}$	8.0	PYTHIA	PYTHIA
			$p_{T\gamma} > 25 \text{ GeV}, \eta < 2.5$		200000	850000
	γj	JETPHOX	$p_{T\gamma} > 25 \text{ GeV}$	$180 \cdot 10^3$	PYTHIA	ALPGEN
					3000000	36700000
	jj	NLOJET++	$p_T > 25$ GeV	$477 \cdot 10^6$	PYTHIA	ALPGEN
					10000000	37000000

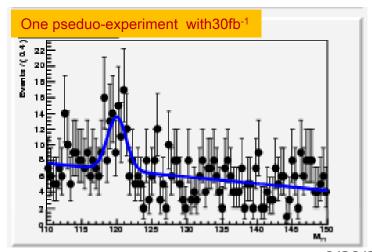

Photon identification variables

Shower shape variables and track isolations are used.

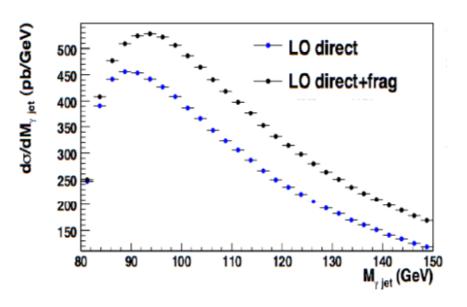


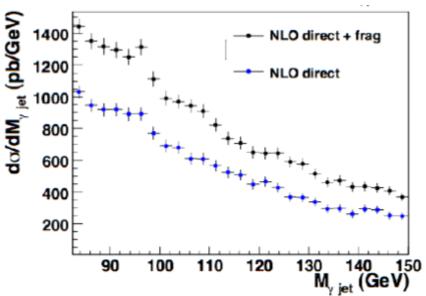
Calibration with longitudinal weights

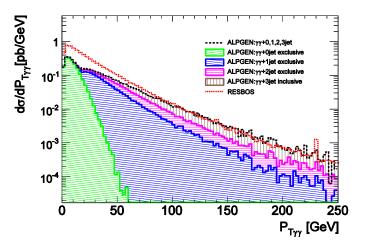

Linearities and resolutions after applying the weights.

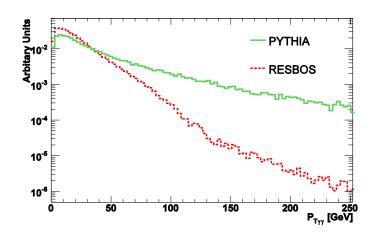


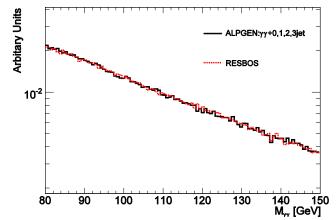
VBF $H \rightarrow \gamma \gamma$ sub-channel

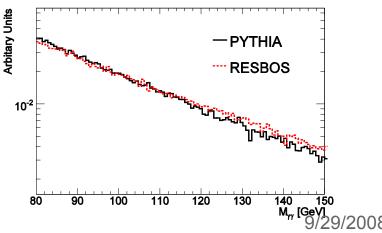


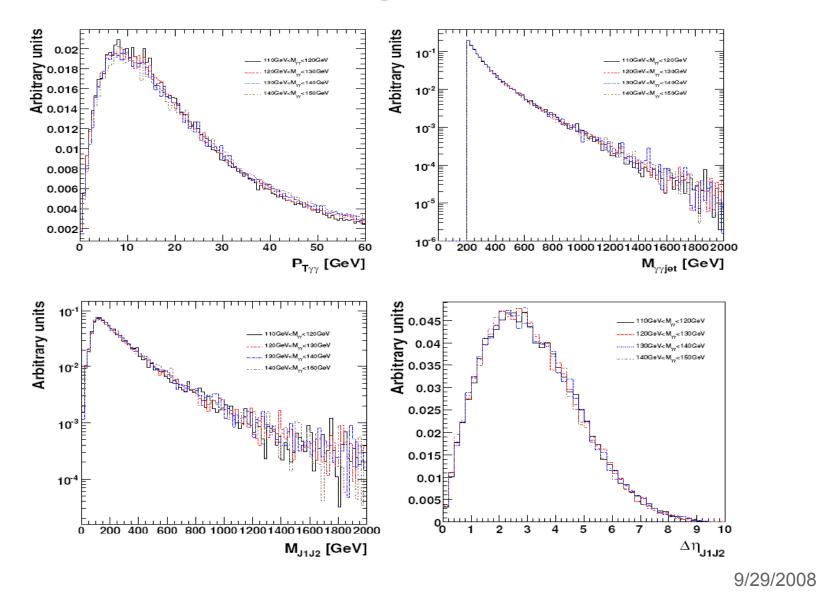

Good S/B. High statistical fluctuation expected at low luminosity




Jetphox results for high order and fragmentation




Reweighing ALPGEN/PYTHIA w.r.t RESBOS for Born/Box processes



- ➤MC's ALPGEN (Born) (upper left plot) and PYTHIA (box) (upper right plot) has LO cross-section.
- >RESBOS has NLO and re-summation calculation, however in parton level.
- ightharpoonup Solution: Reweighing alpgen/pythia $P_{T\gamma\gamma}$ them w.r.t RESBOS .
- $ightharpoonup M_{\gamma\gamma}$ distributions are reasonable consistent after reweighing (bottom plots).

maximum likelihood fit for signal significance computation

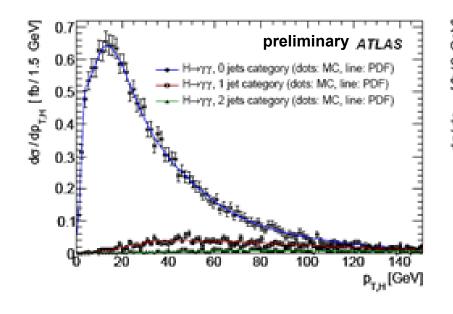
Likelihood:
$$L = \prod_{c=1}^{n_{cas}} e^{-N^c} \prod_{i=1}^{N^c} f_i^c \text{ with: } f_i^c(\mu, p^c) = \mu N_s^c f_{si}^c(p^c) + N_b^c f_{bi}^c(p^c)$$

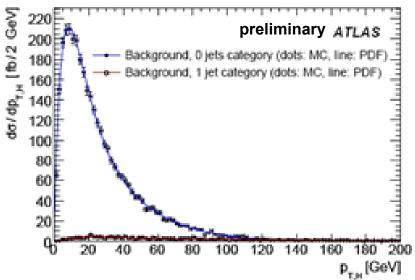
Where: μ corresponds to the hypothesis (μ =1 standard model)

N_s^c presents the signal events in classification c.

 $f_{si}^{c}(p^{c})$ is the signal PDF in classification c.

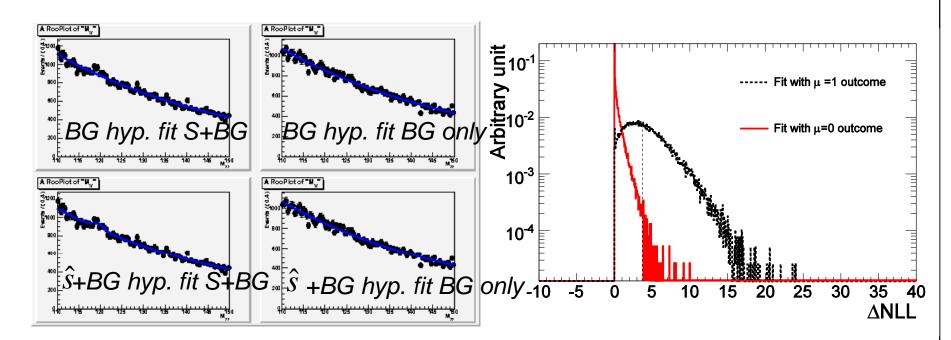
 $f_{bi}^{c}(p^{c})$ is the background PDF in classification c.


N_b^c presents the background events in classification c.


$$N^c = N_s^c + N_b^c$$

Technically, $NLL(\mu,p) = -log(L(\mu,p))$ is used in the fit.

Test some hypothesis : $\Delta NLL(\mu) = NLL(\mu)-NLL(\hat{\mu})$ (e.g. hypothesis μ =0 for discovery, μ =1 for exclusion)


P_{Tyy} for signal and background

Procedure to compute the significance with maximum likelihood fit

- Compute NLL distributions from Toy Monte Carlo:
 - 1. Randomly generate a pseudo-experimental outcome.
 - Perform fits (RooFit) with \hat{S} +B hypothesis with μ free NLL($\hat{\mu}$) and BG (Background-only) hypothesis, compute Δ NLL(μ =0)
 - 3. Repeat many times to get a probability distribution
- Compute two probability distributions:
 - 1. for outcomes with signal ("S+B toy MC", μ =1) and
 - 2. For outcomes without signal ("BG-only toy MC")
 - Compute CL_B from plots $\Delta NLL(BG-only\ toy\ MC)$ and $\Delta NLL(S+B\ toy\ MC)$ and convert it into significance (integrating from the median of S+B toy MC whiling computing CL_B) as right plot shows.

Signal systematics

source	Relative effect(%)
luminosity	3
γ ID eff.	0.2
γ fake rate	20
γ energy scale	0.5
γ resolution	0.5
jet energy scale	7
jet resolution	$75\%\sqrt{(E)} + 7\%$ (when $ \eta < 3.2$)
	$110\%\sqrt(E) + 10\%$ (when $ \eta > 3.2$)

Table 6.1: Estimated scale of signal systematics.

source	Inclusive		Inclusive $H+1jet$		H+2jets		
	gg Fusion	VBF	gg Fusion	VBF	gg Fusion	VBF	
luminosity	3	3	3	3	3	3	
γ ID eff.	+/-0.3	+/-0.4	+/-0.3	+/-0.4	+/-2.3	+/-0.4	
γ fake rate	+/-0.1	+/-0.0	+/-0.0	+/-0.0	+/-0.8	+/-0.1	
γ energy scale	+/-0.2	+/-0.2	+0.6/-0.5	+0.5/-0.7	+/-0.0	+0.3/-0.2	
γ resolution	+/-0.1	+/-0.0	+/-0.0	+/-0.0	+/-0.0	+/-0.1	
jet energy scale	N/A	N/A	+9.9/-12.8	+5.5/-6.1	+18.5/-23.0	+4.9/-8.7	
jet resolution	N/A	N/A	+/-0.2	+/-0.1	+/-2.3	+/-0.6	
total	3.0	3.0	+10.3/-13.1	+6.3/-6.9	+19.0/-23.5	+5.8/-9.2	

Table 6.2: The impact (%) of signal systematics on the signal efficiency.

γγ and γj systematic uncertainties

Table 9: Summary of the relative systematic uncertainties on the $\gamma\gamma$ and γj processes.

Potential sources	γγ	γj
Scale dependence	5%	22%
Fragmentation	6%	2%
PDF	10%	7%
Total	18%	23%