Heavy Ion Physics at the LHC

Urs Achim Wiedemann CERN TH

From elementary interactions to collective phenomena

1973: asymptotic freedom

Today: mature theory with a precision frontier

- background in search for new physics
- TH laboratory for non-abelian gauge theories

How do collective phenomena and macroscopic properties of matter emerge from fundamental interactions?

QCD much richer than QED:

- non-abelian theory
- degrees of freedom change with Q^2

Elliptic Flow: Hallmark of a collective phenomenon

Particle production w.r.t. reaction plane

- Single 2->2 process
- Maximal asymmetry
- NOT correlated to the reaction plane

- Many 2->2 or 2-> n processes
- Reduced asymmetry

$$\sim 1/\sqrt{N}$$

 NOT correlated to the reaction plane

- final state interactions
- asymmetry caused not only by multiplicity fluctuations
- <u>collective component</u> is correlated to the reaction plane

Particle production w.r.t. reaction plane

• Want to measure particle production as function of angle w.r.t. reaction plane

But reaction plane is unknown ...

• Have to measure particle correlations:

$$\left\langle e^{i\,n(\phi_1-\phi_2)}\right\rangle_{D_1\wedge D_2} = v_n\left(D_1\right)v_n\left(D_2\right) + \left(\left\langle e^{i\,n(\phi_1-\phi_2)}\right\rangle_{D_1\wedge D_2}^{corr}\right) \text{ "Non-flow effects"}$$

But this requires signals $v_n > \frac{1}{\sqrt{N}}$

• Improve measurement with higher cumulants: Borghini, Dinh, Ollitrault, PRC (2001)

$$\langle e^{i n(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle - \langle e^{i n(\phi_1 - \phi_3)} \rangle \langle e^{i n(\phi_2 - \phi_4)} \rangle - \langle e^{i n(\phi_1 - \phi_4)} \rangle \langle e^{i n(\phi_2 - \phi_3)} \rangle = -v_n^4 + O(1/N^3)$$

This requires signals $v_n > \frac{1}{N^{3/4}}$

Elliptic flow: v_2

• Momentum space:

$$E\frac{dN}{d^3p} = \frac{1}{2\pi} \frac{dN}{p_T dp_T d\eta} \left[1 + 2v_2(p_T)\cos(2\phi) \right]$$

• 'Non-flow' effect for
$$2^{\rm nd}$$
 order cumulants $N \sim 100 \Rightarrow 1/\sqrt{N} \sim O(v_2)$ for $4^{\rm th}$ order cumulants

for 4th order cumulants

$$1/N^{3/4} \sim 0.03 << v_2$$

strong collectivity

Elliptic flow vs. hydrodynamic simulations

Assumptions:

- perfect (non-dissipative) liquid

$$T^{\mu\nu} = (\varepsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu}$$

- Bjorken boost invariance
- 'realistic' equation of state
- 'realistic' initial conditions
- 'realistic' decoupling (freeze-out)

Results:

- initial transverse pressure gradient

 $\implies \phi \text{ - dependence of flow field } u_{\mu}$ elliptic flow $v_2(p_T)$

- size and pt-dependence of $\,v_2$ data accounted for by hydro ('maximal')
- characteristic **mass dependence**, since all particle species emerge from common flow field u_{μ}

Strong claims at RHIC ... Ideal hydro works

Viscosity: Bounds from theory

ullet Viscosity η controls entropy s increase

$$\frac{d(\tau s)}{d\tau} = \frac{\frac{4}{3}\eta}{\tau T}$$

Hydrodynamics is valid, if

$$\frac{\eta}{\tau T} \frac{1}{s} << 1$$

Constraint from string theory

LHC 1st year running tests hallmark of collectivity

LHC tests the hydro-paradigm

- Hydro prediction for low LHC multiplicity
- Extrapolation of generic RHIC trend

$$v_2 \approx 0.055$$

$$v_2 \approx 0.075$$

(In)consistency with generic trend

Characterization of microscopic dynamics underlying collectivity

Day 1 @ LHC: event multiplicity at y=0

- ullet generic trends in $dN^{ch}/d\eta$
 - extended longitudinal scaling
 - self-similar trapezoidal shape

Saturation models predict

Armesto, Salgado, Wiedemann, PRL94 (2005) 022002

$$\left. rac{1}{N_{
m part}} rac{dN^{AA}}{d\eta}
ight|_{\eta \sim 0} = N_0 \sqrt{s}^{\lambda} N_{
m part}^{rac{1-\delta}{3\delta}}$$

Or Kharzeev, Levin, Nardi, NPA747 (2005) 609.

Both consistent with main trends at RHIC, but ...

Extrapolations to LHC deviate from so-far generic trends in data

Impact for understanding the dynamical origin of soft physics at RHIC and LHC.

First year of Pb+Pb@LHC:

- Physics not luminosity dictated
- First characterization of collective phenomena at 5.5 TeV

- Physics impact: Hydrodynamics?

Hadrochemistry?

Multiplicity

distributions as first handle of saturation?

Strong reasons to run Pb+Pb in 2009 even if run is short.

Question:

Why do we need collider energies

$$\sqrt{s_{NN}} = 200 \, GeV \quad [RHIC]$$

$$\sqrt{s_{NN}} = 5500 \, GeV \quad [LHC]$$

to test properties of dense QCD matter which arise on typical scales

$$T \approx 150 \, MeV$$
, $Q_s \approx 1 - 2 \, GeV$?

Answer 1: Large quantitative gains

Increasing the center of mass energy implies

- Denser initial system
- Longer lifetime
- Bigger spatial extension
- Stronger collective phenomena

A large body of experimental data from the CERN SPS and RHIC supports this argument.

Answer 2: Qualitatively novel access to properties of dense matter

To test properties of QCD matter, large- Q^2 processes provide well-controlled tools (example: DIS).

Heavy Ion Collisions produce <u>auto-generated probes</u> at high $\sqrt{s_{\scriptscriptstyle N\!N}}$

Q: How sensitive are such 'hard probes'?

Bjorken's original estimate and its correction

Bjorken 1982: consider jet in p+p collision, hard parton interacts with underlying event collisional energy loss

$$dE_{coll}/dL \approx 10 \, GeV/fm$$
 (error in estimate!)

Bjorken conjectured monojet phenomenon in proton-proton

But: radiative energy loss expected to dominate

$$\Delta E_{rad} \approx \alpha_s \hat{q} L^2$$
 Baier Dokshitzer Mueller Peigne Schiff 1995

• p+p:
$$L \approx 0.5 \text{ fm}$$
, $\Delta E_{rad} \approx 100 \text{ MeV}$ Negligible!

• A+A:
$$L \approx 5 \ fm$$
, $\Delta E_{rad} \approx 10 \ GeV$ Monojet phenomenon! Observed at RHIC

Parton energy loss - a simple estimate

Medium characterized by transport coefficient:

$$\hat{q} \equiv \frac{\mu^2}{\lambda} \propto n_{density}$$

• How much energy is lost?

Phase accumulated in medium:
$$\left\langle k_T^2 \Delta z \middle/ 2\omega \right\rangle \approx \frac{\hat{q}L^2}{2\omega} = \frac{\omega_c}{\omega}$$
 Characteristic gluon energy

$$N_{coh} \approx \frac{t_{coh}}{\lambda}$$
, where

Number of coherent scatterings:
$$N_{coh} \approx \frac{t_{coh}}{\lambda}$$
, where $t_{coh} \approx \frac{2\omega}{k_T^2} \approx \sqrt{\omega/\hat{q}}$

$$k_T^2 \approx \hat{q} t_{coh}$$

Gluon energy distribution:

$$\omega \frac{dI_{med}}{d\omega dz} \approx \frac{1}{N_{coh}} \omega \frac{dI_1}{d\omega dz} \approx \alpha_s \sqrt{\frac{\hat{q}}{\omega}}$$

Average energy loss

$$\Delta E = \int_0^L dz \int_0^{\omega_c} d\omega \, \omega \frac{dI_{med}}{d\omega \, dz} \sim \alpha_s \omega_c \, \left(\alpha_s \hat{q} L^2 \right)$$

High p_⊤ Hadron Spectra

$$R_{AA}(p_T, \eta) = \frac{dN^{AA}/dp_T d\eta}{n_{coll} dN^{NN}/dp_T d\eta}$$

Centrality dependence:

Centrality dependence: Au+Au vs. d+Au

• Initial state enhancement • Final state suppression ne 2 1.8 Au+Au 200GeV <u>1.8</u> 1.6 1.4 1.4 1.2 1.2 0.8 8.0 0.6 0.6 0.4 0.4 d+Au 200GeV h⁺+h⁻0-20%/ N+N 0.2 0.2 3 p_τ [GeV/c] partonic p_T[GeV/c] energy loss

The fragility of leading hadrons

• Why is R_{AA} = 0.2 natural ? Surface emission limits sensitivity to \hat{q}

$$\hat{q}(\tau = 1 fm/c) \ge 5 \frac{GeV^2}{fm} \approx 5 \hat{q}_{QCD}^{pert}$$

How does a hard probe interact in the medium?

<u>Characterize Recoil</u>: What is kicked in the medium?

Jet multiparticle final states provide qualitatively novel characterizations of the medium.

Jet modifications in dense QCD matter

• <u>'Longitudinal Jet heating':</u>
The entire longitudinal jet multiplicity distribution softens due to medium effects.

Borghini, Wiedemann, hep-ph/0506218

Jets <u>'blown with the wind'</u>
 Hard partons are not produced in the rest frame comoving with the medium

Armesto, Salgado, Wiedemann, Phys. Rev. Lett. 93 (2004) 242301

JEWEL: Jet Evolution With Energy Loss

Disentangling radiative & collisional mechanisms

K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, U.A. Wiedemann, arXiv:0804.3568 [hep-ph]

Jets in Heavy Ion Collisions at the LHC

The physics:

Jet rates are abundant at LHC. 'True' iets not in kinematical reach of

'True' jets not in kinematical reach of RHIC.

• The jet as a thermometer: jets as a far out-of-equilibrium probe participating in equilibration processes.

• Sensitive jet features:

- jet shapes (i.e. calorimetry)
- jet multiplicity distributions
 (in trans. and long. momentum)
- jet-like particle correlations
- jet composition (i.e. hadrochemistry)

• The challenge:

characterize medium-modifications of jets in high multiplicity background.

Prerequisite: determine E_T-distribution of final state hadrons.

LHC: the richness of hard probes

The probes:

- Jets
- identified hadron specta
- D-,B-mesons
- Quarkonia
- Photons
- Z-boson tags

The range:

 Q^2 ,x, A, luminosity

Abundant yield

of hard probes

+ robust signal

= <u>detailed understanding</u> of dense QCD matter

