

Olivier Callot

On behalf of the LHCb commissioning team

LHCb commissioning

- What had to be done
 - Technical challenges
- Before first beam: Cosmics
- First beams
 - TED shots
 - Circulating beam
- What will come next...

What had to be done

♦ What is commissioning?

- Bring all components (Sub-Detectors and service systems) to operational state.
- Define, implement and validate the tools and procedures needed to run the detector as a whole
- Organise the activities to reach the ready state in time.

◆The most important is building a team spirit

- Detectors were built for years by independent teams, used to work alone and to decide what was good for them, without too much constraints.
- Now one builds a single experiment out of these teams, the interest of the experiment may conflict with the sub-group wishes.
- This takes some time, people have to get used to work together, to accept to no longer being their own master...

How we did it

◆Start in 2006 with regular meetings

- Specification documents
- Scenario for commissioning and operation
 - Defines what has to be implemented, and how
- Build slowly a team spirit

◆From early 2008: monthly commissioning weeks

- Put together the various systems and teams
- Identify problems, help each other, celebrate progresses

◆From July 2008: Regular shifts

- First during working hours only
- Then 24/7 from August 18th until recently...

Technical challenges

Central control system

- From a single screen, configure the whole system (from front-end electronics to event filter farm tasks) in a few clicks, in a reasonable amount of time
 - Below 10 minutes for a cold start
 - ~one minute if the front-end was already configured
- Monitor the system centrally
 - Alarm and error screen
 - Data monitoring
- Run the detector with a limited shift crew
 - Two persons after the initial heroic times
 - Piquets for all sub-systems and detectors
- PVSS with FSM is used everywhere

◆Readout at 1 MHz

- Hardware trigger rate is designed to reach 1 MHz in 2009
 - Only ~ 100 kHz possible in 2008 due to the limited capacity of the network and event filter farm, buying late gives you more for your money.

◆Data storage at 2 kHz

Available in 2008

◆Time alignment to a few ns

- Readout of consecutive crossing from a single trigger is a fundamental tool
- This allows measuring the leakage in preceding and following clock cycles, and then minimizing it.
- Up to +-7 clock cycles = 15 consecutive crossings!

10.9. 2008 11:25:26 -25ns

First tools : Cosmics

LHCb is NOT well suited for cosmics

- "fixed target" layout, tracks at +- 200 mrad from horizontal!
- Such horizontal cosmic tracks are rare, well below 1 Hz.

◆But cosmics are still useful

- More vertical cosmics can be used inside one detector (or a few neighbouring ones) to time align various parts together
- The L0 trigger can be used to trigger on them
 - ECAL and HCAL calorimeters, with a high gain to see MIP
 - Muon trigger without spatial correlation (pointing geometry) constraint
- The basic building blocks of the L0 trigger have been commissioned this way at the end of 2007.

Cosmics in the Calorimeters

◆Trigger on a coincidence ECAL-HCAL

- Single channel noise too high for just an OR of ~10k channels at low threshold
 - The calorimeters are NOT intended to measure MIP, but high energy showers!
- Coincidence rate ~10 Hz, mainly close-to-vertical cosmics
 - Allows inter-cell time alignment
- Nice events
 - Adjust relative timing of the 4 components of the calorimeter
 - Map dead / inefficient cells / regions
 - → Then understand and fix the problems...
- Cosmics come from top
 - Slope gives direction, and then time-of-flight corrections.

HCAL

ECAL Preshower SPD

This gives the time alignment

- ◆The calorimeter pulse shape is known
 - Measured on test beams.
 - From the ratio between consecutive BX one can deduce the time
 - And compare the two detectors
 - Resolution about 3 ns
 - Correlation is just the speed of light!

Cosmics with the Muon detector

- ◆Normal physics trigger requires a pointing track
 - M2 and M3 and M4 and M5 in a pointing geometry...
 - Efficiency for cosmics too low, ~ few mHz!
 - But one can relax the requirements
- ◆Trigger on a coincidence M4-M5
 - Almost no pointing constraint

◆Time alignment of the muon stations

Cosmics for the tracking detectors

- ◆Triggered by the Calo / Muon, tracks are seen
 - Easy for OT, similar surface as the Calo...
 - Marginal for IT (small), TT (too far), Velo (small and far...)

Olivier Callot

First beam

◆LHCb is near the Beam 2 injection line

- TED beam stopper about 300 m behind LHCb
 - Particles will arrive in the wrong direction!
 - The beam is not centred on axis, still going up-left
 - Expect around 10 particles per cm²
- TDI is a beam absorber after the injection kicker, about 50 m from LHCb
 - Almost direct view...
 - ~100 times more particles!

TED events

◆ Very large occupancy

- More than 4000 cells fired (over 6000)
- Most of them with many, many particles!
- Trigger on SPD ,multiplicity > 10...

3 October 2008

TED events are nice!

Time alignment with TED

Space alignment

◆Measure the tracks residual

- Simple track fit (no momentum)
- Tracks are long
 - Average 8 space points/track
- The Velo is aligned to ~20 µm
 - For R and Phi sensors.

Also for IT and TT

◆ Delay scan with TED data, September 5

- Sharp peak in average ionisation, 5 ns steps.
- Very high multiplicity events...

Olivier Callot

Space alignment

◆Extrapolate Velo tracks

- Distance to clusters in TT and IT
- Large combinatory due to huge occupancy
 - 10 tracks/cm², normal value is 20 tracks in the whole detector

IT is at $\sim 7 \text{ m}$

With beam

◆Beam 2 is injected near LHCb

- But particles travels in the wrong direction
- And injection is 'dirty', detectors can't be ON at that time...

◆Beam 1 is what we want

Comes from far, which means the environment (beam) is clean

◆We got beam1 only during the 'media day'

- Single shots to a collimator in front of LHCb
- Passing through on a single turn
- During ½ hour...

◆We would have loved to get more !!!!!

Clean event

Splashy event (not all tracks reconstructed...)

OT time alignment, 6 'splashy' events

RICH time alignment

Lot of HPD hits!
30 events
Beam 1 on collimator

LABORATOIRE DEL'ACCÉLÉRATEUR LINÉAIRE

And now...

♦ We were ready for Beam 1 events

- Detector was time aligned (coarse, +- 10 ns)
- Beam-gas with circulating beam
 - Expected a fraction of Hz
- Or 450 GeV collisions
 - Expected a few hundred Hz, with vertices in the Velo...

◆Brutal end of a dream, the LHC started so well...

- Back to cosmics...
- But we learned a lot with these few days full of excitement
 - Time and space alignment
 - Operational procedures
 - Improvements needed...

Other aspects

◆Beam and radiation monitoring

- Beam Condition Monitor commissioned
 - Diamond sensors to detect in ½ turn high radiation
 - It triggered once a dump, which was justified.
- Synchronisation with the RF clock tested OK.
- Data exchanges with LHC

◆Data monitoring

- Online monitoring farm publishes histograms
- Online presenter (root based) with dedicated database
 - Many pre-defined pages to be looked at.
- Online event display, a variant of the offline one "Panoramix"
 - All previously shown events

◆ System monitoring

- Status of the Event Filter farm, 200 nodes this year
- Alarm and Error Screen
 - PVSS based central error display

◆Shift and piquet organisation tool

Internal LHCb development

◆ Celebrations...

Waiting for 2009

◆Many improvements foreseen

- Fix problems that appeared only in the full scale system
- Improve monitoring performance
- Make more robust / fault tolerant the readout system

Commission the full scale readout

■ 1 MHz requires full network and CPU, delivery in February 2009

◆Re-commission the work together

- To get ready for beam in spring
- To rebuild the team spirit after a long shutdown

Summary

◆LHCb has become an experiment

- Not only a collection of sub-detectors
- Learn from each other, share problems and solutions

◆ We were ready in time

- Cosmics gave a first working point
- TED events end of August gave the first LHC-induced tracks ever
- Time alignment and space alignment done at first level
 - Better accuracy with more data

◆Now back to...

- Fixing problems
- Installing the only missing part of the detector, M1

Congratulations to the LHC builders and operators for this wonderful start-up (until the sector 34 failure)

LHCb started very well

Waiting for a fantastic run in 2009 with high energy and good luminosity

