Andrei Golutvin Imperial College London & CERN & ITEP

LHCb Physics Program On behalf of the LHCb collaboration

Physics at LHC 2008, Split

□ A spokesperson of any LHC collaboration has to believe that there will be discovery of New Physics at LHC

General Purpose Detectors are designed for direct observation of New Particles

LHCb has a different strategy

Experimental observables sensitive to New Particles through the interference effects with well studied objects, b-quarks

Various Scenarios

No space left for the 4th possibility

ATLAS CMS high p _T physics	BSM	Only SM	BSM	
LHCb flavour physics	Only SM	BSM	BSM	
Particle Physics	\odot	\odot	<u></u> 2	

Examples of processes mediated by loop diagrams in b-physics

- \square B_{d.s} oscillations: box diagram
- Denguin diagrams:
 - > Radiative penguin: $B_s \rightarrow \phi \gamma$
 - > Electroweak penguin: $B \rightarrow K^* \mu \mu$
 - > Strong penguin: $B \rightarrow \pi \pi, B_s \rightarrow \phi \phi$

Search for NP in CPV by comparing observables measured in tree and loop topologies

 β (tree+box) in $B \rightarrow J/\psi K_s$ γ (tree) in many channels β_s (tree+box) in $B_s \rightarrow J/\psi \phi$ β (peng+box) in $B \rightarrow \phi K_s$ γ (peng+tree) in $B \rightarrow \rho\rho, \rho\pi, \pi\pi$ or $B_s \rightarrow KK$ β_s (peng+box) in $Bs \rightarrow \phi \phi$

New heavy particles, which may contribute to d- and s- penguins, could lead to some phase shifts in all three angles:

 $\delta\gamma(NP) = \gamma(peng+tree) - \gamma(tree)$ $\delta\beta(NP) = \beta(B \rightarrow \phi Ks) - \beta(B \rightarrow J/\psi Ks) \neq 0$ $\delta\beta_s(NP) = \beta_s(B_s \rightarrow \phi \phi) - \beta_s(B_s \rightarrow J/\psi \phi)$

Current sensitivity to New Physics in CPV measurements

□ In box diagrams

 β vs $|V_{ub} / V_{cb}|$ is limited by theory (~10% precision in $|V_{ub}|$) (d-box) β_s not measured accurately (indication of large value from CDF/D0) (s-box)

□ In penguin diagrams:

 $\sigma(\delta\gamma(NP)) \sim 30^{\circ}$ $\sigma(\delta\beta(NP)) \sim 10^{\circ}$ $\sigma(\delta\beta_{s}(NP))$ not measured (d-penguin) (s-penguin) (s-penguin)

 $\mathsf{PS} \quad \delta\beta \,(\mathsf{NP}) \approx \delta\beta_{\mathsf{s}} \,(\mathsf{NP})$

Current sensitivity to New Physics

in Rare Decays (combination of various box and penguin diagrams)

Experiments are just reaching an interesting level of sensitivity in exclusive decays:

 $ightarrow A_{FB}$ in $B \rightarrow K^* \mu \mu$ (BELLE/BaBar)

- > Photon polarization in B $\rightarrow K^* \gamma$ (BELLE/BaBar)
- > BR ($B_s \rightarrow \mu\mu$) (CDF /D0)
- > BR $(D^{o} \rightarrow \mu\mu)$ (CDF)
- Lepton Flavor Violation in τ decays (BELLE/BaBar)

Contribution from LHCb is extremely important !!! Background suppression is a challenge

LHCb Running Conditions

□ Bunch crossing frequency: ~ 40 MHz

 □ For LHCb L ~ 2 × 10³² cm⁻²s⁻¹ (less focusing of the beam locally)
 → multiple interactions are subdominant

□ Prospects for data samples:

- > 2 fb⁻¹ in 1 nominal LHC year
- \succ ~10 fb⁻¹ in a few years
- ~100 fb⁻¹ after possible upgrade to run at
 L ~ 2 × 10³³ cm⁻²s⁻¹

Inelastic pp reactions

LHCb key measurements are potentially sensitive to discovery of New Physics

□ In CP – violation

✓ $φ_s$ ✓ γ in trees
✓ γ in loop

□ In Rare Decays

- \checkmark A_{FB} in B \rightarrow K^{*} $\mu\mu$
- \checkmark BR (B_s $\rightarrow \mu\mu$)
- ✓ Polarization of photon in radiative penguin decays

&

□ Mixing and CP – violation in Charm sector

□ Search for Lepton Flavor Violation in $\tau \rightarrow \mu\mu\mu$

LHCb sensitivities for the key measurements

LHCb prospects for β_s

$$\Box \phi_{S} = -2\beta_{S}$$
 is the counterpart of $\phi_{d} = 2\beta_{S}$

 $\Box \phi_{S} (J/\psi \phi)[SM] = 0.0368 \pm 0.0017 (CKM fitter)$

Most accurate SM prediction \rightarrow increased sensitivity to New Physics effects in the B_s-B_s system : if NP in the box loop

 $\phi_{\rm S} = \phi_{\rm S}(SM) + \phi_{\rm S}(NP)$

□ High BR(B_s → J/
$$\psi\phi$$
) and trigger eff.
LHCb yield in 2 fb⁻¹ 115 k

J/ψφ is not a pure CP-eigenstate;
 angular analysis is needed to separate
 odd and even states

See talk of A. Sarti

Decay	Yield (2 fb⁻¹)	σ (φ _s)
$J/\psi \eta_{\gamma\gamma}$	8.5 k	0.109
$J/\psi\eta_{\pi\pi\pi}$	3 k	0.142
$J/\psi \eta'_{\pi\pi\eta}$	2.2 k	0.154
$J/\psi \eta'_{ ho\gamma}$	4.2 k	0.08
$\eta_c \phi$	3 k	0.108
$D_s^+ D_s^-$	4k	0.133
All CP eig	-	0.046
$J/\psi \phi$	115 k	0.03
All	-	0.021

LHCb prospects for γ

□ In trees:

> Interference between tree-level decays

Three methods for exploiting interference (choice of D⁰ decay modes):

- → (GLW): Use CP eigenstates of $D^{(*)0}$ decay, e.g. $D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$, $K_s \pi^0$
- → (ADS): Use doubly Cabibbo-suppressed decays, e.g. $D^0 \rightarrow K^+\pi^-$
- > (Dalitz): Use Dalitz plot analysis of 3-body D⁰ decays, e.g. $K_s \pi^+ \pi^-$
 - ➤ Mixing induced CPV measurement in B_s → D_s K decays (Specific for LHCb)

□ Interference of trees and penguins

CP asymmetries of $B^0 \rightarrow \pi\pi$ and $B_s \rightarrow KK$ events assuming U-spin symmetry

γ with trees

□ Perform global fit to $B \rightarrow DK$ with common parameters Include results from B^0 and B_s time dependent analyses.

δ _B 0 (°)	0	45	90	135	180
$\sigma_{\!\gamma}$ for 0.5 fb ⁻¹ (°)	8.1	10.1	9.3	9.5	7.8
$\sigma_{\!\gamma}$ for 2 fb ⁻¹ (°)	4.1	5.1	4.8	5.1	3.9
$\sigma_{\!\gamma}^{}$ for 10 fb ⁻¹ (°)	2.0	2.7	2.4	2.6	1.9

γ in penguin loops: $\mathbf{B}^0 \rightarrow \pi\pi$ and $\mathbf{B}_s \rightarrow KK$

□ Fit CP asymmetries of
$$B^0 \rightarrow \pi\pi$$
 and $B_s \rightarrow KK$ event
- 4 observables: $A_{\pi\pi}^{dir}, A_{\pi\pi}^{mix}, A_{KK}^{dir}, A_{KK}^{mix}$

D Parameters: γ , penguin to tree amplitude ratio $d_{\pi\pi}e^{i\Theta_{\pi\pi}}$, $d_{KK}e^{i\Theta_{KK}}$

Weak U - spin constraint

 d_{ππ} = *d_{KK}* ± 20%, *Θ_{ππ}*, *Θ_{KK}* independent

 Measures γ under certain assumptions
 on U - spin symmetry

Sensitivity	2 fb ⁻¹	10 fb ⁻¹
$\sigma_{\gamma}(^{o})$	10	5
$\sigma_{\!$	0.18	0.09
$\sigma_{\theta_{\pi\pi}}^{(\circ)}$	9	5
$\sigma_{\!\scriptscriptstyle \Delta\Theta}$ (°)	17	¹² 8

Measurement of the photon polarization $in B_s \rightarrow \phi \gamma$ decaySee poster of L. Shchutska

 $b \rightarrow \gamma(L) + (m_s/m_b) \times \gamma(R)$

 $\phi \gamma$ produced in B_s and \overline{B}_s decays do not interfere in SM \rightarrow corresponding $A_{CP} = 0$

$$\Gamma(\mathbf{B}_q(\bar{\mathbf{B}}_q) \to f^{CP}\gamma) \propto e^{-\Gamma_q t} \left(\cosh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma_q t}{2} \pm \pm \mathcal{C} \cos \Delta m_q t \mp \mathcal{S} \sin \Delta m_q t \right)$$

SM:

- C = 0 direct CP-violation
- $-S = sin2\psi sin\phi$
- $A^{D} = sin2\psi cos\phi$

an
$$\psi \equiv \left| \frac{A(\bar{B} \to f^{CP} \gamma_R)}{A(\bar{B} \to f^{CP} \gamma_L)} \right|$$

- **Expected signal yield is 11k per nominal LHCb year**
- Sensitivity: σ(A^D)=0.22, σ(S)=σ(C)=0.11 for 2fb⁻¹ σ(A^D)=0.09 for 10fb⁻¹
 To be compared with current accuracy from B-factories: σ (sin2ψ) ~ 0.4

$B \rightarrow K^* \mu \mu$

 \Box Forward-backward asymmetry A_{FB} (s) in $\mu\mu$ rest frame is a sensitive NP probe \Box Predicted zero of A_{FB} (s) depends on Wilson

~7k events / 2fb⁻¹ with B/S ~ 0.2 After 10 fb⁻¹zero of A_{FB} located to ±0.28 GeV^2 (0.5 GeV^2 after 2 fb^{-1}) providing 7% stat. error on C_7^{eff} / C_9^{eff} Full angular analysis gives better discrimination between models. Looks promising 15

$B_s \rightarrow \mu\mu$

- □ Super rare decay in SM with well predicted $BR(B_s \rightarrow \mu\mu) = (3.55\pm0.33) \times 10^{-9}$
- □ Potentially sensitive to NP In MSSM BR $\sim tan^6 \beta / M^4_A$
- □ Best present limit is from CDF: BR($B_s \rightarrow \mu\mu$) < 4.7×10⁻⁸ @ 90% CL
- LHCb selects a signal using 3D likelihood 10² of invariant mass, geometrical variables and PID:
 - Uncorrelated variables with different control samples
 - Invariant mass resolution is ~ 20 MeV/c²

 $B_{s} \rightarrow \mu\mu$

For the SM prediction LHCb expects 8 signal and 12 background events in the most sensitive bin in 2 fb⁻¹. Background is dominated by semileptonic decays of different b

 $\Box \quad 3\sigma \text{ evidence with 2 fb}^{-1} \\ 5\sigma \text{ observation with 6 fb}^{-1}$

For more precision measurement one needs the absolute normalization Measurements of B_s BR at Y(5S) by BELLE would be welcome

Charm Physics

Charm has unique sensitivity to NP since loop diagrams involve down-type quarks

- Precision measurements of x & y, mixing parameters in the charm system (factor of 5 improvement wrt current accuracy)
 - Wrong Sign (D⁰ → π⁻K⁺) mixing analysis
 $x' = x \cos \delta + y \sin \delta \quad y' = y \cos \delta x \sin \delta$ with 10 fb⁻¹ N(ws) = 232500
 $x'^2 \pm 0.064 \text{ (stat.)} (×10^{-3}) & y' \pm 0.87 \text{ (stat.)} (×10^{-3})$
 - > Singly Cabibbo Suppressed 2-body lifetime ratio measurement of y_{CP} : $D^0 \rightarrow K^- K^+$, $\pi \pi^+$

$$y_{\rm CP} \equiv \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to (K^+ K^-, \pi^+ \pi^-))} - 1 = y \cos \phi - x \sin \phi \left[\frac{R_m^2 - 1}{2}\right]$$

with 10 fb⁻¹ $N(D^0 \rightarrow K^- K^+ \text{ from secondary } D^{*+}) \sim 8 \times 10^6$ $y_{CP} \pm 0.05 \text{ (stat.)}$

Charm Physics

CP Violation in the charm sector is extremely small in SM
 CP asymmetries possible in mixing (A^M) or in between mixing and decay(A^I)

 $A^M \propto -y/2(|q/p| - |p/q|) \times \cos(\phi) \& A' \propto x/2(|q/p| + |p/q|) \times \sin(\phi)$

- Both ϕ and (|q/p| 1) are negligibly small in SM Existing limits: $|q/p| = 0.87 \pm {}^{0.18}_{0.15} \quad \& \phi = -9.1 \pm {}^{8.1}_{7.8} \text{ degree}$
- Higher sensitivity will come as mixing analyses improve precision
 Sensitivity to many NP models

Example: CPV in Singly Cabibbo Suppressed decays (NP in penguins) $D^0 \rightarrow KK, \pi\pi$ $A_{CP} = \frac{\Gamma(D^0 \rightarrow KK(\pi\pi)) - \Gamma(\overline{D}^0 \rightarrow KK(\pi\pi))}{\Gamma(D^0 \rightarrow KK(\pi\pi)) + \Gamma(\overline{D}^0 \rightarrow KK(\pi\pi))}$

With 10 fb⁻¹ statistical sensitivity on Acp will reach 10 ⁻³ level May be observable !

CPV measurements

NP in boxes:

 $\Box \phi_s$ is the most sensitive measurement

NP in penguins:

Very difficult to measure

- γ(tree) vs γ(loop) requires assumption on the U-spin symmetry
- □ Probably the best sensitivity: Yes β_s in $B_s \rightarrow J/\psi\phi$ & $B_s \rightarrow \phi\phi$ $\sigma(\delta\beta_s) \sim \sigma(\beta_s) \sim 0.05$
 - or β in $B \rightarrow J/\psi Ks$ & $B \rightarrow \phi Ks$ $\sigma(\delta\beta) \sim \sigma(\beta) \sim 0.1$

Sensitivity with 10 fb⁻¹ Do we need 100 fb⁻¹?

$$\sigma(\phi_{\rm s}) \sim 0.01$$
 Yes
(theor. uncert. 0.002)

Yes

20

$$\sigma(\delta\gamma) \sim \sigma(\gamma_{loop}) \sim 5^{\circ}$$
 Yes (?)

$$\sigma(\delta\gamma) \sim \sigma(\alpha) \sim 4^{\circ}$$
 Yes (?)

Rare B Decays

NP in penguins:

□ Photon polarization in $B_s \rightarrow \phi \gamma$ decay:

NP in a mixture of loop diagrams:

 $\Box B \rightarrow K^* \mu \mu$

 $\Box \ B_s \rightarrow \mu \mu$

Charm Physics

Sensitivity with 10 fb⁻¹ Do we need 100 fb⁻¹ ?

σ(*A*^Δ)= 0.09 Yes (theor. uncert. ~0.01)

 $\sigma(s0) \sim 0.3 \text{ GeV}^2$ Yes (assuming theor. progress)

theor. progress)

There could be great

possibilities

To be explored

21

 $>5\sigma$ observation if SM Yes (abs. norm. is required)

Measured CP asymmetries

approach SM prediction

LVF in τ decays

 $BR(\tau \rightarrow 3\mu) < 10^{-8}$

using τ from $D_s \rightarrow \tau v$

The LHCb Upgrade

- □ L0 hadron trigger
 - Is bandwidth limited
 - − Rate of HCAL triggers with E_T
 > 2 GeV

*increases from 4 to 25 MHz when lumi from 2 to 20x 10*³²

- □ L0 muon trigger
 - ~90% efficiency, scales with luminosity
- □ L0 hadron trigger
 - Only ~50% efficient
 - does not scale with luminosity

The LHCb Upgrade

□ Must change all front end electronics (except muon system) to 40 MHz

- all Si based devices are replaced
- changing RICH photon detectors
- Keep same Vertex Locator geometry for a few years, change to pixels or 3D devices later
- Outer Tracker geometry to be slightly modified to keep occupancies acceptable

□ Work on 40 MHz readout chip is starting

Summary

- Clean experimental signature of NP is unlikely at currently operating experiments
- □ LHCb has a lot of opportunities to discover NP in a few years of data taking (with 10 fb⁻¹ data sample)
 - ✓ Physics program is complementary to that of ATLAS & CMS
- □ Study of NP properties needs much improved precision in b-physics
 - \rightarrow LHCb upgrade to collect 100fb⁻¹ is very important