B PHYSICS AT THE TEVATRON KAREN GIBSON, UNIVERSITY OF PITTSBURGH Physics @ the LHC October 3, 2008 Split, Croatia

B Physics Program at Tevatron Has Been Tremendously Successful!

- Complements excellent programs at B-factories
- Many unique measurements made at Tevatron
 - Observation of B_s mixing, b-baryons
 - \blacksquare CPV in $B_s \rightarrow J/\psi \phi$
- Several measurements (e.g. lifetimes, direct CPV) in B⁰/B⁺ systems are approaching sensitivity of BABAR/Belle

A Special Time for TeV(atron)

- Tevatron can contribute uniquely to B physics for the next few years
 - Transition between first run of B factories, LHC experiments
- At advent of LHC era, consider Tevatron B physics program present and future
 - □ Highlight recent results (from 2008)
 - Anticipate results to come
 - 2-4x the statistics can be added to many existing measurements before the end of Run II!

Strong tracking system, ability to trigger on displaced tracks

⇒ Good mass resolution, high statistics in non-leptonic decays

Excellent calorimetry, muon id, can reverse direction of B field

⇒ Large sample of semi-leptonic decays, forward decays, good direct CPV meas.

Three Main Categories of B Physics Results Discussed Today

- Production
 - Birth of B hadrons
- Lifetimes
 - Death of B hadrons
- CP Violation
 - The curious things in between

 $B_{(s)} \rightarrow \mu\mu$ will be discussed in context of SUSY, see Tuesday's talk by D. Toback for details

6

Production

MICHELANGELO Buonarroti

Creation of Adam c. 1510

Searching for New Particles

- Look for things that we think should be there and also for things that shouldn't
 - Can find some surprises
 - e.g. X, Y, Z particles
 - Many b-baryons have not been observed until Run II!
 - Observed $\Sigma_{\rm b}^{\pm}$ (2006), $\Xi_{\rm b}^{-}$ (2007) and recently $\Omega_{\rm b}^{-}$ (2008)

J = 1/2 b Baryons

Investigate Properties of X(3872)

- □ First observed by Belle collaboration in 2003
- \square Observed in decay X(3872) \to J/ $\psi\pi^{+}\pi^{-}$
 - Nature of particle is still unknown
 - D*D "molecule"? 4-quark state?
- Search for mass splitting, measure absolute mass
 - Observation of mass splitting offers evidence of tetraquark
 - No mass splitting makes absolute mass interesting
 - Checks possibility of bound-state D*D

No Mass Splitting Observed in X(3872)

- □ Fit mass with Breit-Wigner convolved with resolution
 - Result consistent with no mass splitting
 - Assign upper limit CL

 Δ m(X(3872)) < 3.2 (3.6) MeV/c² at 90% (95%) C.L.

Most Precise Measurement of X(3872) Mass

 $m(X(3872)) = 3871.61 + -0.16 (stat) + -0.19 (syst) MeV/c^2$

Measured mass is below D*D threshold, although uncertainties are within threshold \Rightarrow D*D bound state is still a possibility

First Observation of $\Omega_{\rm b}^{-}$ Baryon

- Announced by D0 on Aug. 29, 2008
- Observation made with
 1.3 fb⁻¹ of data
 - $lue{}$ Builds on previous observation of Ξ_b^-

Previous Observation of $\Xi_{\rm b}^{-}$

М

- □ In 2007, both CDF and D0 observed the Ξ_b^- and made a precise determination of its mass

Ω^- Reconstruction Improved with Special Selection Techniques

 $\hfill\Box$ Use boosted decision tree (BDT) to improve identification of Ω^- signal

Re-process data with higher IP req. to increase Ξ^-/Ω^- acceptance!

Observe Significant $\Omega_{\rm b}^{-}$ Signal

 \square Observe 17.8 \pm 4.9 (stat) \pm 0.8 (syst) events

 $m = 6.165 \pm 0.010(stat) \pm 0.013 (syst) GeV/c^2$

Expect $5.94-6.12 \text{ GeV/c}^2$ from theory

Calculate signal significance to be 5.40

$$\frac{f(b \to \Omega_b^-)Br(\Omega_b^- \to J/\psi \Omega^-)}{f(b \to \Xi_b^-)Br(\Xi_b^- \to J/\psi \Xi^-)} = 0.80 \pm 0.32(stat)_{-0.22}^{+0.14}(syst)$$

Lifetimes

CARAVAGGIO

Judith Beheading Holofernes c. 1598

Why Measure Lifetimes?

HFAG 2006

- Test HQET predictions
 - \blacksquare Have previously seen 1-2 σ discrepancies between lifetime predictions and measurements in B $_{s}^{0}$, Λ_{b}^{0}
 - Expect $\tau(B^+) > \tau(B^0) \approx \tau(B_s^0) > \tau(\Lambda_b^0) \gg \tau(B_c^+)$
- Because they're there?
 - Fundamental quantity, give complete picture of B's
 - Useful for other measurements (e.g. b-tagging)

B₀ Lifetime Now Agrees with HQET

Partially reco. decays double statistics!

$$c\tau(B_s^0) = 455 \pm 12$$
 (stat.) ± 7 (syst.) μm

Very compatible with HQET predictions that $c\tau(B^0) \approx c\tau(B_s^0)$ $(c\tau(B^0) = 458.7 \pm 2.7, PDG 2008)$

- □ Blinded measurement of lifetime in 1.3 fb⁻¹ of data
 - Data collected with displaced track trigger
 - ⇒ must correct for trigger bias (use Monte Carlo)

www-cdf.fnal.gov/physics/new/bottom/080207.blessed-bs-lifetime/

B_c⁺ Lifetime Agrees with Theoretical Predictions

arXiv:0805.2614, submitted to PRL

Simultaneously fit mass and lifetime

$$c\tau(B_c^+) = 134.3 \pm 11 \text{ (stat)} \pm 10 \text{ (syst)} \ \mu\text{m}$$

B_c⁺ Lifetime Agrees with Theoretical Predictions and D0

 \square Fit e, μ channels separately, combine ${\cal L}$ afterwards

$$c\tau(B_c^+) = 142 \pm 15 \text{ (stat)} \pm 6 \text{ (syst)} \mu\text{m}$$

www-cdf.fnal.gov/physics/new/bottom/080327.blessed-BC_LT_SemiLeptonic/

$\Lambda_{\rm b}^{\ 0}$ Lifetime Question Closer to Resolution

c
$$\tau(\Lambda_b^{\ 0}) = 423 \pm 14 \text{ (stat)} \pm 9 \text{ (syst)} \ \mu\text{m,}$$
 c $\tau(\Lambda_b^{\ 0}) \ /\text{c} \ \tau(B^0) = 0.92 \pm 0.04$ PDG 2007

- Measure lifetime in displaced track sample
 - □ First fit mass, then lifetime

New Measurements Are in Good Agreement with Predicted Lifetimes

New
measurements
of lifetime are
in good
agreement with
theoretical
predictions!

New Technique Used to Measure B⁺ Lifetime

- Measured in displaced track sample
 - Novel method for correcting for trigger bias without

using Monte Carlo

Use acceptance function to correct for trigger bias

on event-by-event basis

$$c\tau(B^+) = 498.2 \pm 6.8$$
 (stat.) ± 4.5 (syst.) μ m, ($c\tau(B^+) = 491.1 \pm 3.3$ μ m, PDG 2008)

²³ CP Violation

HOLBEIN, Hans the Elder The Martyrdom of Saint Sebastian c. 1516

Three Types of CP Violation

- Decay of hadrons (direct CPV)
 - Only type of CPV for charged mesons
- Mixing of neutral mesons (indirect CPV)
 - Semi-leptonic decays of neutral meson
- Interference between mixing and decay

$$\blacksquare B^0 \to J/\psi \ K_s^0 \Rightarrow sin2\beta$$

$$\blacksquare \ B_s^{\ 0} \to J/\psi \phi \Rightarrow sin 2\beta_s$$

Use flavor tagging for more powerful measurement of CP phases!

CPV Phases in B_s⁰ Sensitive to New Physics

Mixing governed by Schrodinger eqn.

$$\begin{split} i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} &= \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} \\ |B_s^H\rangle &= p \, |B_s^0\rangle - q \, |\bar{B}_s^0\rangle \\ |B_s^L\rangle &= p \, |B_s^0\rangle + q \, |\bar{B}_s^0\rangle \\ \Delta \mathbf{m}_{\mathrm{s}} &= \mathbf{m}_{\mathrm{H}} - \mathbf{m}_{\mathrm{L}} \approx \ 2 \, |\mathbf{M}_{12}| & \qquad \qquad \text{Measured at Tevatron in 2006!} \\ \Delta \mathbf{\Gamma} &= \mathbf{\Gamma}_{\mathrm{L}} - \mathbf{\Gamma}_{\mathrm{H}} \approx \ 2 \, |\mathbf{\Gamma}_{12}| \cos(\phi_{\mathrm{s}}), \\ \text{where } \phi_{\mathrm{s}} &= \arg(-\mathbf{M}_{12}/\Gamma_{12}) \sim 0.004 \text{ in SM} \end{split}$$

 \blacksquare CPV in $B_s^0 \rightarrow J/\psi \phi$ gives access to phase, sensitive to NP

Discrepancy with SM Remains in CDF's Flavor-Tagged $B_s^0 \rightarrow J/\psi \phi$

- Recent update finds 1.8 σ (p-value = 7%) discrepancy with SM prediction for $\beta_s^{J/\psi\phi}$
 - Expect further improvement in statistical precision shortly!

www-cdf.fnal.gov/physics/new/bottom/080724.blessed-tagged_BsJPsiPhi_update_prelim/

Similar Discrepancy Observed by D0 in Flavor-Tagged $B_s^0 \rightarrow J/\psi \phi$

- □ D0 result very similar to CDF's!
 - □ Discrepancy w/SM is 1.7 σ , p-value = 0.085

Trend is identical, $\phi_s^{\ J/\psi\phi}\equiv -2\beta_s$

D0 finds agreement in strong phase $\delta_{||}$ between $B_s^0 \rightarrow J/\psi \phi$ (assuming $\phi_s^{J/\psi \phi} = 0$) and $B^0 \rightarrow J/\psi K^{*0}$ \Rightarrow Use phases in $B^0 \rightarrow J/\psi$ K^{*0} to choose one of two solutions?

More Significant Discrepancy in Combined $B_s^0 \rightarrow J/\psi \phi$ Result

arXiv:0808.1297v1

New CDF result not included in combination!

G. Hou et al suggest that discrepancy might be due to t' quark w/mass $\sim 300 \text{ GeV/c}^2 - 1 \text{ TeV/c}^2$

See G. Giurgiu's talk in Friday parallel session for details!

Most Precise Measurement of B_s⁰ Semileptonic Asymmetry

New flavor-tagged measurement of B_s⁰
 semileptonic asymmetry, a^s_{sl}

$$\blacksquare B_s^0 \rightarrow D_s^- \mu^+ \nu X \rightarrow [\phi \pi^-] \mu^+ \nu X$$

lacksquare Depends on lifetime, $\Delta\Gamma$, Δm_s , and a_{sl}^s

Most precise measurement to date!

$$a_{sl}^{s} = -0.0024 \pm 0.0117(stat)_{-0.0024}^{+0.0015}(syst)$$

Previous, untagged measurement $a_{sl}^s = 0.0245 \pm 0.0193 \text{ (stat)} \pm 0.0035 \text{ (syst)}$

$\Delta\Gamma/\Gamma$ Measured in $B_s^{\ 0} \rightarrow D_s^{(*)} + D_s^{(*)} -$ Consistent with World Average

- \square Measure branching ratio to determine $\Delta\Gamma$ (2.8 fb⁻¹)
 - \blacksquare Search for one $D_s{\to}\phi\pi$, other to $D_s{\to}\phi\mu\nu$

Under certain theoretical assumptions, $B_s^0 \rightarrow D_s^{(*)} + D_s^{(*)} - D_s^{(*)}$ is nearly CP even

$$2Br(B_s \to D_s^{(*)}D_s^{(*)}) \simeq \Delta\Gamma_s^{CP} \left[\frac{1 + \cos\phi_s}{2\Gamma_L} + \frac{1 - \cos\phi_s}{2\Gamma_H} \right]$$

Find

$$Br(B_s^0 \to D_s^{(*)}D_s^{(*)}) = 0.042 \pm 0.015(\text{stat}) \pm 0.017(\text{syst})$$

Assuming SM, $\phi_s = 0$, $\Delta \Gamma^{CP} = \Delta \Gamma$

$$\frac{\Delta\Gamma_s}{\Gamma_s} = 0.088 \pm 0.030(\text{stat}) \pm 0.036(\text{syst})$$

Consistent with WA (2007) $\Delta\Gamma/\Gamma$ = 0.096 + 0.048 -0.053

www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B53/

New Measurement of Direct CPV in B⁺ \rightarrow J/ ψ K⁺ (π ⁺)

PRL **100**, 211802 (2008)

- SM predicts $A_{CP}(B^+ \rightarrow J/\psi K^+) \sim 0.003$
 - NP might produce asymmetries up to ~ 0.01

$$A_{CP}(B^{+} \to J/\psi K^{+}(\pi^{+})) = \frac{N(B^{-} \to J/\psi K^{-}(\pi^{-})) - N(B^{+} \to J/\psi K^{+}(\pi^{+}))}{N(B^{-} \to J/\psi K^{-}(\pi^{-})) + N(B^{+} \to J/\psi K^{+}(\pi^{+}))}$$

$$A_{CP}(B^{+} \to J/\psi K^{+}) = +0.0075 \pm 0.0061 \text{ (stat)} \pm 0.0027 \text{ (syst)}$$

$$A_{CP}(B^{+} \to J/\psi \pi^{+}) = -0.09 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

32

Looking to the Future

MCGUINNESS, Ryan The Need to Know 2008

Many Interesting New and Updated Measurements to Come!

- Updates to CPV measurements
 - Expect 2-4x higher yield depending on measurement
 - More flavor-tagged CPV results
- Updated lifetimes with higher statistics
 - \blacksquare Updated B \rightarrow J/ ψ X lifetimes with 2x more data
 - Will give most precise B^+ , $\Lambda_b^{\ 0}$ lifetimes to date
 - New lifetime measurements with novel techniques
 - $B_s^0 \rightarrow D_s^- \pi^+$ lifetime measured with MC-free method
- Observation of new states?

Valuable Contributions to Study of B Hadrons Made at Tevatron

- Exciting time for B physics at the Tevatron!
 - Many significant contributions to knowledge of B hadrons has been made
 - Expect many interesting, important updates in the next couple of years!
- Look forward to contributions to field from LHC experiments!

Back-up

Selection of X(3872)

- Use ANN to select events
 - Optimize selection on Monte Carlo (signal) and mass sidebands (background)

Mass Splitting of X(3872)

- Model resolution with Monte Carlo simulation
 - Width scale floats freely in fit

Cross-Checks of $\Omega_{\rm b}^{-}$ Signal (1)

- Check WS events and mass sidebands for spurious excesses
 - None observed!

Cross-Checks of $\Omega_{\rm b}^{-}$ Signal (2)

- \square Check lifetime distribution of $\Omega_{\rm b}^{-}$ candidate events
 - Consistent with B hadron lifetime

Cut-based Analysis of $\Omega_{\rm b}^{-}$

- Alternatively, try using simpler cut-based analysis
 - \blacksquare Find 15.7 \pm 5.3 (stat) events
 - $m = 6.177 \pm 0.015 \, \text{GeV/c}^2$
 - Signal significance is 3.9σ

$\Omega_{\rm b}^{-}$ Significance Calculation

■ Evaluate significance from likelihood ratio of background only hypothesis (L_B) to signal + background hypothesis (L_{S+B})

$$\sqrt{-2\Delta \ln L} = \sqrt{-2\ln\left(\frac{L_B}{L_{S+B}}\right)}$$

B_s Mass Fit in Lifetime Measurement

- Perform simultaneous
 unbinned maximum
 likelihood fit to mass and
 lifetime
 - Use partially reconstucted decays to double statistics
 - e.g. $B_s^0 \rightarrow D_s^- \rho^+ (\rightarrow \pi^0 \pi^+)$
 - $\square \sim 2200 \ B_s^0$ candidates

Comparison of B_s⁰ Lifetime with Prev. Results

- B_s⁰ lifetime is higher than recently measured B_s⁰ lifetimes in flavor-specific decay modes
 - Expect 50% of $\Gamma_{\rm L}$, $\Gamma_{\rm H}$ in flavor-specific modes

Measurement of $B_c^+ \rightarrow J/\psi e^+ X$ Lifetime

- □ Fit lifetime only, use mass as cross-check
 - $lue{}$ Determine all background shapes and normalizations from data if possible, MC otherwise \Rightarrow constrain in fit

$$c\tau(B_c^+ \rightarrow J/\psi e^+ X) = 122^{+18}_{-16}$$
 (stat) μm

Measurement of $B_c^+ \rightarrow J/\psi \mu^+ X$ Lifetime

- □ Fit lifetime only, use mass as cross-check
 - $lue{}$ Determine all background shapes and normalizations from data if possible, MC otherwise \Rightarrow constrain in fit

$$c\tau(B_c^+\!\to\! J/\psi\mu^+ X$$
) = 179 $^{+33}$ $_{-27}$ (stat) μm

Combination of Semilep. B_c⁺ Lifetimes

\square Combine -2InL_e, -2InL_{μ}

Unitarity Relations in B^0/B_s^0

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \qquad V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

Mixing and Decay in B_s⁰

Mixing between particle and anti-particle occurs through the loop processes

New Physics in B_s⁰ Decays

- \Box $B_s^0 \overline{B}_s^0$ oscillations observed by CDF
 - lacktriangle Mixing frequency Δm_s now very well-measured
 - Precisely determines $|M_{12}|$ in good agreement w/SM pred.
- □ Phase of mixing amplitude is still very poorly

determined!

$$M_{12} = |M_{12}| e^{i\phi_m}$$
,
where $\phi_m = arg(V_{tb}V_{ts}^*)^2$

New physics could produce large CP phase!