

Measurement of B_s mixing phase β_s at the Tevatron

Gavril Giurgiu Johns Hopkins University on behalf of the CDF and DØ collaboration

Physics at LHC, Split, Croatia October 3, 2008

Tevatron

- pp collisions at 1.96 TeV
- 4 fb⁻¹ data on tape for each experiment
- Show analyses with 2.8 fb⁻¹

Run II Integrated Luminosity 19 April 2002 - 20 September 2008

CDF II Detector

DØ Detector

- Central tracking: silicon vertex detector - drift chamber
 - $\delta p_T/p_T$ = 0.0015 p_T
 - \rightarrow excellent mass resolution
- Particle identification: dE/dX and TOF
- Good electron and muon ID by calorimeters and muon chambers

- Excellent tracking and muon coverage
- Excellent calorimetry and electron ID
- Silicon layer 0 installed in 2006 improves track parameter resolution

β_s Phase and the CKM Matrix

- CKM matrix connects mass and weak quark eigenstates
- Expand CKM matrix in $\lambda = \sin(\theta_{\text{Cabibbo}}) \approx 0.23$

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix}$$

- To conserve probability CKM matrix must be unitary

 \rightarrow Unitary relations can be represented as "unitarity triangles"

Neutral B_s System

- Time evolution of B_s flavor eigenstates described by Schrodinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$

- Diagonalize mass (M) and decay (Γ) matrices \rightarrow mass eigenstates :

$$|B_s^H\rangle = p \,|B_s^0\rangle - q \,|\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p \,|B_s^0\rangle + q \,|\bar{B}_s^0\rangle$$

- Flavor eigenstates differ from mass eigenstates and mass eigenvalues are different ($\Delta m_s = m_H - m_L \approx 2|M_{12}|$)

 $\begin{array}{l} \rightarrow {\sf B}_{s} \text{ oscillates with frequency } \Delta {\sf m}_{s} \\ \text{precisely measured by} \\ {\sf CDF} \ \Delta {\sf m}_{s} = 17.77 \ \text{+/-} \ 0.12 \ \text{ps}^{\text{-1}} \\ {\sf DØ} \ \ \Delta {\sf m}_{s} = 18.56 \ \text{+/-} \ 0.87 \ \text{ps}^{\text{-1}} \end{array}$

- Mass eigenstates have different decay widths $\Delta \Gamma = \Gamma_{L} - \Gamma_{H} \approx 2|\Gamma_{12}|\cos(\boldsymbol{\phi}_{s}) \quad \text{where} \quad \phi_{s}^{SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3}$

CP Violation in $B_s \rightarrow J/\Psi \Phi$ Decays

- Analogously to the neutral B⁰ system, CP violation in B_s system occurs through interference of decays with and without mixing:

- CP violation phase β_s in SM is predicted to be very small, O(λ^2) \rightarrow New Physics CPV can compete or even dominate over small Standard Model CPV

$$\beta_s$$
 vs ϕ_s

- Up to now, introduced two different phases:

$$\phi_{\rm s}^{\rm SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3} \qquad \text{and} \qquad \beta_s^{\rm SM} = \arg\left(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*\right) \approx 0.02$$

- New Physics affects both phases by same quantity $\phi_s^{
m NP}$ (arxiv:0705.3802v2):

$$2\beta_s = 2\beta_s^{\rm SM} - \phi_s^{\rm NF}$$
$$\phi_s = \phi_s^{\rm SM} + \phi_s^{\rm NP}$$

- If the new physics phase ϕ_s^{NP} dominates over the SM phases $2\beta_s^{SM}$ and $\phi_s^{SM} \rightarrow$ neglect SM phases and obtain:

$$2\beta_s = -\phi_s^{\rm NP} = -\phi_s$$

$B_s \rightarrow J/\Psi \Phi$ Phenomenology

- Extremely physics rich decay mode
- Can measure lifetime, decay width difference $\Delta\Gamma$ and CP violating phase β_{s}

- Decay of B_s (spin 0) to J/ Ψ (spin 1) Φ (spin 1) leads to three different angular momentum final states:

L = 0 (s-wave), 2 (d-wave) \rightarrow CP even (\approx short lived or light B_s if $\Phi_s \approx 0$)

L = 1 (p-wave) \rightarrow CP odd (\approx long lived or heavy B_s if $\Phi_s \approx 0$)

- three decay angles $\overrightarrow{\rho} = (\theta, \phi, \psi)$ describe directions of final decay products

$B_s \rightarrow J/\Psi \Phi$ Phenomenology (2)

- Three angular momentum states form a basis for the final J/ $\Psi\Phi$ state

- Use alternative "transversity basis" in which the vector meson polarizations w.r.t. direction of motion are either (Phys. Lett. B 369, 144 (1996), 184 hep-ph/9511363):

- transverse (⊥ perpendicular to each other) \rightarrow CP odd - transverse (∥ parallel to each other) \rightarrow CP even - longitudinal (0) \rightarrow CP even

$B_s \rightarrow J/\Psi \Phi$ Decay Rate

- B_s \rightarrow J/ $\Psi\Phi$ decay rate as function of time, decay angles and initial B_s flavor: $\frac{d^4 P(t,\vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{||}|^2 \mathcal{T}_+ f_2(\vec{\rho})$ time dependence terms + $|A_{\perp}|^{2} \mathcal{T}_{-} f_{3}(\vec{\rho}) + |A_{\parallel}| |A_{\perp}| \mathcal{U}_{+} f_{4}(\vec{\rho})$ angular dependence terms + $|A_0||A_{\parallel}|\cos(\delta_{\parallel})T_+f_5(\vec{\rho})$ $+ |A_0||A_{\perp}|\mathcal{V}_+ f_6(\vec{\rho}),$ terms with β_s dependence $T_{\pm} = e^{-\Gamma t} \times [\cosh(\Delta \Gamma t/2) \mp (\cos(2\beta_s)) \sinh(\Delta \Gamma t/2)]$ $\mp \eta \sin(2\beta_s) \sin(\Delta m_s t)$ terms with Δm_s dependence present if initial state of B meson (B vs anti-B) $\mathcal{U}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) \right]^{\bigstar}$ is determined (flavor tagged) $-\cos(\delta_{\perp}-\delta_{\parallel})\cos(2\beta_s)\sin(\Delta m_s t)$ 'strong' phases: $\pm \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh(\Delta\Gamma t/2)$ $\mathcal{V}_{\pm} = \pm e^{-\Gamma t} \times [\sin(\delta_{\perp}) \cos(\Delta m_s t)]$ $\delta_{\parallel} \equiv \operatorname{Arg}(A_{\parallel}(0)A_0^*(0))$ $-\cos(\delta_{\perp})\cos(2\beta_s)\sin(\Delta m_s t)$ $\delta_{\perp} \equiv \operatorname{Arg}(A_{\perp}(0)A_{0}^{*}(0))$ $\pm \cos(\delta_{\perp})\sin(2\beta_s)\sinh(\Delta\Gamma t/2)].$

- Identification of B flavor at production (flavor tagging) \rightarrow better sensitivity to β_s 10

Signal Reconstruction

- Both CDF and DØ reconstruct $B^{0}_{s} \rightarrow J/\psi(\rightarrow \mu + \mu -)\Phi(\rightarrow K + K -)$ in 2.8 fb⁻¹

CDF ~3200 signal events (expect ~4000 with PID signal selection)

DØ ~2000 signal events

Lifetime and Lifetime Difference

CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Likelihood expression predicts better sensitivity to β_s but still double minima due to symmetry: $_{2\beta_s}
ightarrow \pi - 2\beta_s$ pseudo experiment $2\beta_s$ - $\Delta\Gamma$ likelihood profile $\Delta\Gamma \rightarrow -\Delta\Gamma$ 0.8 $\delta_{\parallel} \rightarrow 2\pi - \delta_{\parallel}$ $\cos(\delta_{\perp}) < 0$ $\delta_{\perp} \rightarrow \pi - \delta_{\perp}$ δ_{\Box} 0.6 effect of tagging δ_{\Box} 0.4 experiments δ_{\Box} 0.4 'typical' $\cos(\delta_{\perp} - \delta_{\parallel}) > 0$ pseudo-exp - Study expected effect of tagging using pseudo-experiments 0.2 strong phases - Improvement of parameter can separate -0.0 resolution is small due to limited the two minima tagging power ($\epsilon D^2 \sim 4.5\%$ -0.2 compared to B factories $\sim 30\%$) -0.4 - However, $\beta_s \rightarrow -\beta_s$ no longer a $\cos(\delta_{\perp}) > 0$ -0.6 symmetry $\cos(\delta_{\perp} - \delta_{\parallel}) < \mathbf{0}$ \rightarrow 4-fold ambiguity reduced to -0.8 -2 2 0 2-fold ambiguity $2\beta_{s}$ (rad) \rightarrow allowed region for β_s is reduc 2∆log(L) = 2.3 ≈ 68% CL ____ un-tagged to half $2\Delta \log(L) = 6.0 \approx 95\%$ CL _____ tagged

CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Likelihood expression predicts better sensitivity to β_s but still double minima due to symmetry: $_{2\beta_s}
ightarrow \pi - 2\beta_s$ pseudo experiment $2\beta_s$ - $\Delta\Gamma$ likelihood profile $\Delta\Gamma \rightarrow -\Delta\Gamma$ 0.8 $\delta_{\parallel} \rightarrow 2\pi - \delta_{\parallel}$ another 'typical' $\delta_{\perp} \rightarrow \pi - \delta_{\perp}$ $\delta_{\perp} \rightarrow 0.6$ effect of tagging $\delta_{\perp} = 0.4$ experiments $\delta_{\perp} = 0.4$ pseudo-exp - Study expected effect of tagging using pseudo-experiments 0.2 - Improvement of parameter -0.0 resolution is small due to limited tagging power ($\epsilon D^2 \sim 4.5\%$ -0.2 compared to B factories $\sim 30\%$) -0.4 - However, $\beta_s \rightarrow -\beta_s$ no longer a -0.6 symmetry \rightarrow 4-fold ambiguity reduced to -0.8 -2 2 0 2-fold ambiguity $2\beta_{s}$ (rad) \rightarrow allowed region for β_s is reduc 2∆log(L) = 2.3 ≈ 68% CL _ un-tagged to half 2∆log(L) = 6.0 ≈ 95% CL tagged

14

CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Both DØ and CDF results fluctuate in the same direction 1-2 σ from SM prediction

- Recent DØ analysis shows consistency of strong phase and amplitudes in $B_s \rightarrow J/\Psi \Phi$ and $B^0 \rightarrow J/\Psi K^{*0}$ and supports the strong phase constraint (arXiv:0810.0037v1) ¹⁵

Non-Gaussian Regime

- In ideal case (high statistics, Gaussian likelihood), to get the 2D 68% (95%) C.L. regions, take a slice through profile likelihood at 2.3 (6) units up from minimum

- In this analysis integrated likelihood ratio distribution (black histogram) deviates from the ideal χ^2 distribution (red continuous curve)
- -To get 95% CL need to go up ~7 instead of 6 units from minimum
- Procedure used by both CDF and DØ

- From pseudo experiments find that Gaussian regime is indeed reached as sample size increases

CDF Systematics

- At CDF, systematic uncertainties studied by varying all nuisance parameters +/- 5 σ from observed values and repeating LR curves (dotted histograms)

- Nuisance parameters:

. . .

- lifetime, lifetime scale factor uncertainty,
- strong phases,
- transversity amplitudes,
- background angular and decay time parameters,
- dilution scale factors and tagging efficiency
- mass signal and background parameters
- Take the most conservative curve (dotted red histogram) as final result

Comparison Between CDF and DØ

- DØ releases constraints on strong phases \rightarrow double minimum solution
- CDF and DØ are in good agreement and both favor negative values of Φ_s = -2 β_s

(positive values of β_s)

Combining CDF and DØ Results

- HFAG combines old CDF (1.4 fb⁻¹, 1.5 σ from SM) and DØ (2.8 fb⁻¹, 1.7 σ from SM) results yield a 2.2 σ deviation from SM (similar results found by UTFit and CKM collaborations)
- The latest CDF analysis (2.8 fb⁻¹, 1.8 σ from SM) not yet included, but will slightly increase the tension wet. SM expectation

19

Future

- CPV in Bs system is one of the main topics in LHCb B Physics program \to will measure β_s with great precision
- Meanwhile Tevatron can search for anomalously large values of β_{s}
- Shown results with 2.8 fb⁻¹, but 4 fb⁻¹ already on tape to be analyzed soon
- Expect 6/8 fb⁻¹ by the end of 2009/2010

If β_s is indeed large combined CDF and DØ results have good chance to prove it γ_2

Conclusions

- Measurements of CPV in $\rm B_s$ system done by both CDF and DØ
- Significant regions in β_s space are ruled out
- Best measurements of ${\sf B}_{\sf s}$ lifetime and decay width difference $\Delta\Gamma$
- Both CDF and DØ observe 1-2 sigma β_s deviations from SM predictions
- Combined HFAG result 2.2 σ w.r.t SM expectation
- Interesting to see how these effects evolve with more data

Backup Slides

Analysis

- Ingredients:
 - Signal reconstruction
 - B flavor identification (tagging)
 - Angular analysis
 - Maximum likelihood fit
 - Statistical analysis

Introduction

- Charge Parity violation (CPV) is a necessary ingredient to explain matter antimatter asymmetry in Universe
- CP symmetry is broken in Nature by the weak interaction
- Weak interaction Lagrangean is not invariant under CP transformation

 → due to complex phases in mixing matrices that connect up-type fermions with down-type fermions via W bosons:

Cabibbo Kobayashi Maskawa (CKM) quark mixing matrix transforms quark mass eigenstates into weak eigenstates

Why Look for CPV in B_s System ?

- CP violation has been measured in various Kaon and B-meson decays

1. Indirect CP violation in the kaon system (ϵK) 2. Direct CP violation in the kaon system ϵ'/ϵ 3. CP Violation in the interference of mixing and decay in B⁰ \rightarrow J/ ψ K⁰. 4. CP Violation in the interference of mixing and decay in B⁰->h'KO 5. CP Violation in the interference of mixing and decay in B⁰->K+K-Ks 6. CP Violation in the interference of mixing and decay in B⁰-> π + π -7. CP Violation in the interference of mixing and decay in B⁰-> π + π -8. CP Violation in the interference of mixing and decay in B⁰->D*+D-8. CP Violation in the interference of mixing and decay in B⁰-> μ ⁰ 10. Direct CP Violation in the decay B⁰ \rightarrow K- π + 11. Direct CP Violation in the decay B $\rightarrow \rho\pi$

12. Direct CP Violation in the decay $B \rightarrow \pi + \pi$ -

- CKM matrix well constrained

- Within the SM framework, CP violation in the quark sector is orders of magnitude too small to explain the matter - antimatter asymmetry

- Only place left to find large CP violation without invoking new physics is lepton sector in long baseline neutrino oscillation experiments

- ... or we can look for non-SM sources of CP violation

- Ideal place to look for non-SM CPV is the neutral B_s meson system

B Physics at the Tevatron

- Mechanisms for b production in $p\overline{p}$ collisions at 1.96 TeV

q

- At Tevatron, b production cross section is much larger compared to B-factories \rightarrow Tevatron experiments CDF and DØ enjoy rich B Physics program
- Plethora of states accessible only at Tevatron: B_s , B_c , Λ_b , Ξ_b , Σ_b ... \rightarrow complement the B factories physics program
- Total inelastic cross section at Tevatron is ~1000 larger than b cross section \rightarrow large backgrounds suppressed by triggers that target specific decays

b

CDF Selection of B_s Signal Using ANN

- NN maximizes S/ $\sqrt{(S+B)}$, trained on MC for signal and mass sidebands for background

CDF Tagging Calibration and Performance

Flavor Tagging

- Tevatron: *b*-quarks mainly produced in *b* anti-*b*-pairs
 - \rightarrow flavor of the B meson at production inferred with
- OST: exploits decay products of other *b*-hadron in the event
- SST: exploits the correlations with particles produced in fragmentation

- Output: decision (*b*-quark or anti-*b*-quark) and probability the decision is correct
- Similar tagging power for both CDF and DØ ~4.5% (compared to ~30% at B factories)₂₉

CDF Angular Analysis

- CP even and CP odd final states have different angular distributions
 - \rightarrow use angles $\rho = (\theta, \phi, \psi)$ to separate CP even and CP odd components
- Detector acceptance distorts the theoretical distributions
 - \rightarrow determine 3D angular efficiency functions from simulation and check in data
- Example 2D and 1D angular efficiency projections in ϕ and cos(ϕ) (3rd dimension, ψ , not shown)

CDF Background Angular Analysis

- Angular background distributions are determined from data B_s mass sidebands
- Notice consistency between background angular distributions and detector sculpting efficiencies on previous page

CDF Cross-check on $B^0 \rightarrow J/\Psi K^{*0}$

 $B^0 \rightarrow J/\psi K^{*0}$: high-statistics test of angular

efficiencies and fitter

 $c\tau = 456 \pm 6 \text{ (stat)} \pm 6 \text{ (syst)} \ \mu\text{m}$ $|A_0(0)|^2 = 0.569 \pm 0.009 \text{ (stat)} \pm 0.009 \text{ (syst)}$ $|A_{\parallel}(0)|^2 = 0.211 \pm 0.012 \text{ (stat)} \pm 0.006 \text{ (syst)}$ $\delta_{\parallel} = -2.96 \pm 0.08 \text{ (stat)} \pm 0.03 \text{ (syst)}$ $\delta_{\perp} = -2.97 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst)}$

- Not only agree with latest BaBar results, (PRD 76,031102 (2007)) but also competitive

$$|A_{0}(0)|^{2} = 0.556 \pm 0.009 \text{ (stat)} \pm 0.010 \text{ (syst)} |A_{\parallel}(0)|^{2} = 0.211 \pm 0.010 \text{ (stat)} \pm 0.006 \text{ (syst)} \delta_{\parallel} = -2.93 \pm 0.08 \text{ (stat)} \pm 0.04 \text{ (syst)} \delta_{\perp} = -2.91 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)}$$

DØ Cross-check on $B^0 \rightarrow J/\Psi~K^{*0}$

- Consistency of amplitudes and strong phase between Bs and B0

arXiv:0810.0037v1

Analysis without Flavor Tagging

- Drop information on production flavor
- Simpler but less powerful analysis

$$\begin{aligned} \mathcal{T}_{\pm} &= e^{-\Gamma t} \times \left[\cosh(\Delta \Gamma t/2) \neq \cos(2\beta_s) \sinh(\Delta \Gamma t/2) \right. \\ & \mp \eta \sin(2\beta_s) \sin(\Delta m_s t) \right], \end{aligned}$$

$$\begin{aligned} \mathcal{U}_{\pm} &= \pm e^{-\Gamma t} \times \left[\frac{\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t)}{-\cos(\delta_{\perp} - \delta_{\parallel}) \cos(2\beta_s) \sin(\Delta m_s t)} \\ &\pm \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right] \\ \mathcal{V}_{\pm} &= \pm e^{-\Gamma t} \times \left[\frac{\sin(\delta_{\perp}) \cos(\Delta m_s t)}{-\cos(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t)} \\ &\pm \cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right]. \end{aligned}$$

- Still sensitive to CP-violation phase β_{s} -
- Suited for precise measurement of width-difference and average lifetime

$CDF \beta_s$ in Untagged Analysis

- Fit for the CPV phase

- Biases and non-Gaussian

- Strong dependence on true values for biases on some fit parameters.

a) Dependence on one parameter in the likelihood vanishes for some values of other parameters:

e.g., if $\Delta\Gamma$ =0, δ_{\perp} is undetermined $\cos(\delta_{\perp})\sin(2\beta_s)\sinh(\Delta\Gamma t/2)$]

b) L invariant under two transformations:

 \rightarrow 4 equivalent minima

$$2\beta_{s} \rightarrow -2\beta_{s}, \ \delta_{\perp} \rightarrow \delta_{\perp} + \pi$$
$$\Delta\Gamma \rightarrow -\Delta\Gamma, \ 2\beta_{s} \rightarrow 2\beta_{s} + \pi$$

β_{s} in Untagged Analysis

- Irregular likelihood and biases in fit
 - → CDF quotes Feldman-Cousins confidence regions: Standard Model probability 22%
- DØ quotes point estimate: $\Phi_s = -0.79 + -0.56$ (stat) $+0.14_{-0.01}$ (syst)
- Symmetries in the likelihood \rightarrow 4 solutions are possible in $2\beta_s\text{-}\Delta\Gamma$ plane

CDF External Constraints in Tagged Analysis (1.4 fb⁻¹)

- Spectator model of B mesons suggests that B_{s} and B^0 have similar lifetimes and strong phases
- Likelihood profiles with external constraints from B factories:

constrain lifetime and strong phases:

- External constraints on strong phases remove residual 2-fold ambiguity

Effect of Dilution Asymmetry on β_s

- Effect of 20% b-bbar dilution asymmetry is very small

Comparison Between CDF Tagged and Untagged Analysis

- Allowed parameter space significantly reduced by using B_s flavor tagging
- Negative β_s values are suppressed

CDF Comparison Between 1.4 fb⁻¹ and 2.8 fb⁻¹

- dotted line = 1.4 fb^{-1}
- solid line = 2.8 fb^{-1}

Non-Gaussian Regime

- In ideal case (high statistics, Gaussian likelihood), to get the 2D 68% (95%) C.L. regions, take a slice through profile likelihood at 2.3 (6) units up from minimum

- In this analysis integrated likelihood ratio distribution (black histogram) deviates from the ideal χ^2 distribution (red continuous curve)
- -To get 95% CL need to go up ~7 instead of 6 units from minimum
- Procedure used by both CDF and DØ

- From pseudo experiments find that Gaussian regime is indeed reached as sample size increases

CDF Systematics

- At CDF, systematic uncertainties studied by varying all nuisance parameters +/- 5 σ from observed values and repeating LR curves (dotted histograms)

- Nuisance parameters:

. . .

- lifetime, lifetime scale factor uncertainty,
- strong phases,
- transversity amplitudes,
- background angular and decay time parameters,
- dilution scale factors and tagging efficiency
- mass signal and background parameters
- Take the most conservative curve (dotted red histogram) as final result

CDF 1D Profile Likelihood

 β_{s} is within [0.28, 1.29] at the 68% CL

CDF Updated Tagger Coming Soon

Another Related Puzzle ?

- Direct CP in $B^+ \rightarrow K^+ \pi^0$ and $B^0 \rightarrow K^+ \pi$ should have the same magnitude.
- But Belle measures $\Delta A \equiv A_{K^{\pm}\pi^{0}} A_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$, (4.4 σ) Lin, S.-W. et al. (The Belle collaboration) Nature 452,332–335 (2008)
- Including BaBar measurements: $> 5\sigma$

- W-S Hou explains above effects by introducing the fourth fermion generation and predicts large β_s value (arXiv:0803.1234v1)

