Physics at LHC-2008 Split-CROATIA, 29.9. – 4.10.2008

B-physics with ATLAS and CMS

Brigitte Epp, Astro- and Particle Physics, University of Innsbruck, Austria

representing ATLAS / CMS collaborations

B-physics @ ATLAS/CMS

- p-p collisions at √s = 14 TeV: σ (bb) = 500 μb
 10⁵ bb pairs /s @ L=10³³ cm⁻²s⁻¹
 huge statistics allows precision measurements of B hadron species
- LHC ratio $\sigma_{bb}/\sigma_{inel}$ is higher compared to earlier accelerators –> μ rate from B-events is higher
- ATLAS / CMS are general purpose detectors, however B-physics requirements were taken into account in detector and trigger building
- robust muon and di-muon triggers ->
 possibility to collect valuable B-physics events
 with LHC data

B-physics program @ATLAS/CMS

Early data period:

- ightharpoonup L_{int} = 10 100 pb⁻¹:
 - early measurements from J/Ψ and Υ and b-quark cross-section,
 QCD tests at new energy
 - large b cross-section will allow early extraction of exclusive decays, like $B^+ \to J/\Psi \ K^+$, $B_d^{\ 0} \to J/\Psi \ K^{O*}$, $B_s \to J/\Psi \ \Phi$
 - J/Ψ, Υ and exclusive B-channels will be a tester for detector calibration (mass, lifetime, etc)
- ightharpoonup L_{int} = 200 pb⁻¹ 1 fb⁻¹:
 - high statistics will allow to improve worlds precision of lifetime measurements
 - set new limit for B_s → µµ
 - improve measurement on B_c and Λ_b

B-physics program @ATLAS/CMS (cont)

Main data period: $L_{int} = 10 - 30 \text{ fb}^{-1}$ and higher

■ rare and semi-rare decays: $B_s \rightarrow \mu\mu$, $b\rightarrow d,s \mu\mu$

■ CP-violating B_s mixing phase studies: $B_s \rightarrow J/\Psi \Phi$, $B_s \rightarrow D_s \pi(a_1)$

■ Λ_b polarisation: $\Lambda_b \to \Lambda J/\Psi$

full potential of B_c and other heavy flavour hadrons

■ lepton flavour violating search: $\tau^- \rightarrow \mu^- \mu^+ \mu^-$

covers a wide range over the different LHC periods for SM and New Physics (NP) measurements

Trigger strategy in ATLAS

ATLAS trigger schema

●LVL1

ohardware-based, identifies Regions of Interest (RoI) for further processing

•LVL2

oconfirm LVL1 trigger

oprecision muon chamber and inner detector measurements in LVL1 Rol

EF

orefine LVL2 selection using offline-like algorithms

ofull event, alignment and calibration data available

Three level Trigger: \bot hardware \bot HLT (L2+EF) \to software

B-physics Trigger in ATLAS

B-Physics is accounted for 5÷10% of total trigger resources: it must be fast, efficient and selective

At L = 10^{33} cm⁻² s⁻¹: (low luminosity)

L1: B-trigger is based on following strategies:
di-muon L1 signature or single muon combined with Jet- or
EM-Rol

<u>L2</u>:

- topological di-muon trigger (see high luminosity)
- if only one L1 muon → the second muon is found at the HLT stage
- hadron trigger: tracking in the ID to reconstruct hadrons in RoI, specific for each channel, e.g. $D_s(\Phi\pi)$, rare semi-leptonic channels

At $L = 10^{34}$ cm⁻² s⁻¹: (high luminosity)

- topological di-muon trigger:
 based on two L1 muons confirmed at L2
- optional increase of pt-threshold

Trigger strategy in CMS

Two Level Trigger: L1 \rightarrow hardware

HLT → software

Level 1 Trigger (L1) - hardware based on muon detectors and calorimeters processing time: 3.2 μs
 40 MHz → 100 kHz

High Level Trigger (HLT)
 fast (local) reconstruction similar to offline analysis
 has access to all event data with full precision and granularity
 processing time: ~1s
 100 kHz → 150 Hz

B-physics Trigger in CMS

At L1:

Single muon: $p_T > 7$ GeV/c (14 GeV/c for L_{high})

Di- muon: $p_T > 3 \text{ GeV/c } (7 \text{ GeV/c for } L_{high})$

At HLT:

Exclusive and inclusive B triggers ~ 5Hz

- reconstruction of three most possible vertices with pixel detector
- regional track reconstruction around L1 μ
- search for (un)like charge track pairs in given mass window
- partial reconstruction combined with p_T-cuts

Quarkonia: production

J/ψ ->di-muon
main channel for early data
clear signature ->
calibration, event monitoring

Already with first LHC data enough statistics to probe different production models

Quarkonia: polarization

Production mechanism of quarkonium unexplained and polarization for J/ψ and Υ not understood (α .. polarization parameter)

CDF and DØ measurements on J/ ψ and \Upsilon are not in agreement with each other and theoretical predictions

Crude superimpose of ATLAS stat uncertainties with 10 pb-1 assuming α =0 :

Already with 10 pb⁻¹ ATLAS will measure J/ ψ polarization to same precision as Tevatron with 1.3 fb⁻¹ - but with interesting high p_T data! Same precision for Υ polarization studies can be reached after ~100 pb⁻¹

Weak phase of B_s mixing

The weak phase of Bs mixing, ϕ_s is very small and precisely predicted within SM

$$\phi_s$$
 SM = $-arg(V_{ts}^2) = -2\lambda 2\eta = -0.0368 \pm 0.0018$

some NP- models predict large φ_s

CDF and D0 set confidence level bounds on $\Delta\Gamma_s$ - ϕ_s

Their conclusion:

assuming SM values $\Delta\Gamma_s$ =0.096 ps⁻¹ and ϕ_s =0.04 the probability of deviation of these values of as large as the observed data is 15 % (CDF) and 6.6% (D0)

experimentally most feasible channel is

$$B_s \rightarrow J/\Psi(\mu\mu)~\Phi(KK)$$
:

Measurement of ϕ_s is challenging \rightarrow could point to NP

$B_s \rightarrow J/\Psi(\mu\mu) \Phi(KK)$:

- good to trigger (μμ)
- good BG suppression
- Experimental information: 3 angles, proper time, flavor tag, BG–fraction + composition Δm_s measurement from $B_s \rightarrow D_s \pi(a_1)$
- Independent information of uncertainties of experimental values
- huge statistics (~100k per year) →
 multivariable analysis with
 parameters + constraint input values

ATLAS, CMS after 30 fb⁻¹

 \rightarrow δ (ϕ_s) = 0.07 each (larger through NP?)

	ATLAS	СМЅ	
Luminosity	30 fb ⁻¹ / 3Y		
Statistics	240000	260000	
Background	30%	33%	
	dominant B _d -J/y, K* B _d -J/y K ⁺ π ⁻		
Time resol	83 fs	77 fs	
Mass resol	16.6 MeV	14 MeV	
Flav tagging	μ, e, Qjet	μ, e, Qjet	
φ _s	0.067	0.068	
ΔΓs	13%	12%	
Гѕ	1%	0.9%	
A_{\parallel}	0.9%	0.8%	
$A_{\!\perp}$	3%	2.7%	
$\Delta m_s (ps^{-1})$	17.77 +- 0.12		
$\delta_1\delta_2$	Fixed from B _d -J/y K*		

$B_s \to \mu \mu$

NP may enhance the BR $(3.42 \pm 0.46) \cdot 10^{-9}$ in SM by several orders of magnitude through new loop diagrams present best limit: CDF (2007) with 2 fb⁻¹ of data

$$BR(B_s^0 \to \mu^+ \mu^-) < 5.8 \cdot 10^{-8}$$
 at 95% CL (=17·Br_{SM})

- trigger is di-muon signature → search also at nominal LHC L =10³⁴ cm⁻²s⁻¹
- main issue of cuts is background rejection (comb bb→ µµX , hadron misidentification, rare B-decays)

ATLAS / CMS have similar discriminating variables with different selection cut values:

- ✓ isolation of the muon pair
- √ significance of the decay length
- ✓ angle between di-muon momentum and direction to PV

Physics at LHC-2008

√ mass window around m(B_s)

More details for CMS: see talk in the afternoon B.Caponeri

bb (121.6)

Split - CROATIA, 3.10.2008

$B_s \rightarrow \mu\mu$: results

For 10 fb⁻¹ signal and main backgrounds → expected number of events

	$B_s \rightarrow \mu\mu$	$bb \to \mu \mu X$	$B_s \rightarrow K\pi$	$B_s \rightarrow K \mu \nu$
ATLAS	5.7	14(+13,-10)	0.015	negl.
CMS	6.1	14(+22,-14)	< 0.3	negl.

$B_s \rightarrow \mu\mu$ sensitivity

- with 2 fb⁻¹ BR< $\sim 2 \times 10^{-8}$
- with 10 20 fb⁻¹ SM prediction region
- 3σ evidence after 3 years@10³³
- 5σ observation after 1 years@10³⁴

(signal cross section is translated to a BR by the reference process B+ \rightarrow J/ Ψ K+)

Exclusive semi-leptonic rare decays b→d,s µµ

b→s(d) I⁺ I⁻ FCNC transitions provide a good test of the SM and indirect search for signals in NP:

- CKM matrix
- differential decay rate sensitive to $NP A_{FB}$, dilepton mass spectrum
- information on long-distance
 QCD effects

EXP, SM MSSM C7geff>0

Exclusive semi-leptonic rare decays - trigger

L1 di-muon triggers:

study on different trigger cuts

HLT trigger:

specific for each channel track search for charged hadrons from Φ , Λ_o , K_o^* decays in the RoI of ID surrounding the found di-muon signal

With 30 fb⁻¹ ATLAS will achieve a sensitivity to distinguish between SM and certain classes of NP - models.

ATLAS supports semi-rare decays of all B-hadrons: B^+, B_0, B_s , Λ_b

30 fb ⁻¹ (3 years)	# of signal events
$B \rightarrow K^{0*} \mu \mu$	2500
$B_s \rightarrow \phi \mu\mu$	900
$B^+ \rightarrow K^{+*} \mu \mu$	4000
$B^+ \rightarrow K^+ \mu \mu$	2300
$\Lambda_b \to \Lambda \mu \mu$	800

CMS has equivalent potential – studies are on-going!

LFV in $\tau^- \rightarrow 3\mu$ (CMS)

SM lepton flavor violation is negligible, but some NP models allow BR $\sim O(10^{-10} \div 10^{-7})$

Current exp. limits:

BELLE BR
$$\leq 3.2 \times 10^{-8} (535 \text{ fb}^{-1})$$

BaBar BR $\leq 5.3 \times 10^{-8} (376 \text{ fb}^{-1})$

T sources at LHC −

- clean experimental signature
- suitable triggers

Decay	N _τ / 10 fb ⁻¹
$W \rightarrow T V_T$	1.7 x10 ⁸
$Z \rightarrow TT$	3.2×10^7
$B^0 \rightarrow \tau X$	4.0 x10 ¹¹
$B^{\pm} \rightarrow \tau X$	3.8 x10 ¹¹
$B_s \rightarrow \tau X$	7.9 x10 ¹⁰
$D_s \rightarrow \tau X$	1.5 x10 ¹²

CMS L1: single
$$\mu \rightarrow p_T > 14 \text{ GeV}$$

di-
$$\mu \rightarrow p_T > 3 \text{ GeV}$$

CMS HLT: single
$$\mu \rightarrow p_T > 19$$
 GeV

di-
$$\mu \rightarrow p_T > 7 \text{ GeV}$$

At L_{high} more stringent trigger (pileup)

Summary

- ATLAS, CMS B-physics program is prepared for all LHC luminosities
- <u>Early period</u> (<10³³): heavy flavour production measurements provide good ground for QCD tests at the new energy
- <u>10³³ period</u>:
 - improve current world's precisions on properties of B-hadron species
 - reach sensitivity to New Physics effects in B_s CP-violation and in semi-rare B-decays
 - reach three sigma effect in $B_s \rightarrow \mu\mu$ (supposing SM)
- Nominal LHC luminosity (10³⁴):
 - thanks to powerful muon triggers ATLAS, CMS will reach $B_s \to \mu\mu$ five sigma sensitivity already after one year of running
- ATLAS, CMS B-physics data are a valuable source for SM and New Physics constraints

Backup

Backup

Polarization - Quarkonia

Measure high-p_T polarization to distinguish production models

Combine and fit to measured distribution in slices of p_T Shown: $12 \le p_T \le 13$ GeV

- Use software that is also used by CDF http://www-cdf.fnal.gov/physics/statistics/statistics-software.html
 - Bayesian method
 - blimit.C returns s_{up} such that $_0$ $\int_{sup} p(s|N_{obs})ds = \beta$
 - s ... signal rate
 - p(s|N_{obs}) ... posterior p.d.f. for s, given N_{obs}
 - $s_{up} = blimit(\beta, N_{obs}, \epsilon, \Delta\epsilon, N_{bg}, \Delta N_{bg}, \alpha)$ β ... CL value (0.9, 0.95) $s^{(\alpha-1)}$ is the prior p.d.f. for the signal s $N_{obs} = \epsilon \cdot s + N_{ba}$, $\epsilon = signal$ efficiency
 - N_{bq} very large uncertainty due to limited MC statistics
 - will be estimated from sidebands, once data are available
 - Setting $N_{obs} = N_{bg} \pm \Delta N_{bg}$ one gets the upper limit s_{up} on the signal cross section in the absence of signal
 - see blue curve and hatched region on slide 14

Calculating the 3(5)σ discovery sensitivity

- If $(N_{obs} N_{bg}) / \sqrt{N_{bg}} >> 1 \rightarrow evident discovery$
 - this quantifies the significance of a discovery
- Therefore use the following simple relation

-
$$N_{\text{signal}} = (N_{\text{obs}} - N_{\text{bg}}) = 3 \cdot \sqrt{N_{\text{bg}}}$$
 and $5 \cdot \sqrt{N_{\text{bg}}}$

- $N_{bg} \propto L_{int}$
- $N_{signal} = \varepsilon \cdot \sigma(B_S) \cdot Br(B_S \rightarrow \mu \mu) \cdot L_{int}$
- Br(B_S $\rightarrow \mu\mu$) for x σ discovery sensitivity scales with $\sqrt{L_{int}}$

 $\rm B_{\rm s}^{\rm \, 0}\,$ oscillation amplitude as a function of $\Delta m_{\rm s}$ for 10 fb⁻¹ using the amplitude fit method

fully hadronic decay channels $B_s^{\ 0} \to D_s^{\ -} \pi^+$ and $B_s^{\ 0} \to D_s^{\ -} a_1^+$ combined

• 95% CL sensitivity: 29.6 ps⁻¹

• 5 σ measurement limit: 20.5 ps⁻¹