

QCD and Top Quark Physics at the LHC

Frank-Peter Schilling Karlsruhe Institute of Technology

On behalf of the CMS and ATLAS Collaborations Physics at the LHC 2008, Split 01 October 2008

Introduction

- LHC opens new regime in rates and phase space
 - QCD: large phase space for gluon emission (low-x); very high Pt jet production
 - Top: cross section factor 100 enhanced wrt Tevatron
- With the first LHC data:
 - rediscover standard model at LHC energies
 - Can not claim new physics if SM is not understood
 - QCD and Top are backgrounds to many new physics processes
- Focus here on early measurements (10-100 pb-1)

Campbell, Huston, Stirling, Rept.Prog.Phys.70:89,2007

Charged hadron multiplicity

Pythia: ~ In²(s) → Phojet: ~ In(s) **Motivation:** Charged hadrons Measu **CMS Preliminary** One of the first possible 10 Tsallis simulation VTHIA6.214 analyses! PVTHIA6.214 - defaul JN_{chz}/dη at ղ⊟⁰ PHOJET1.12 Large uncertainty in model 10¹⁰ predictions for LHC! on interaction UA5 and CDF dat LHC //2mprd²N/dndpr[(GeV/c)⁻²) 협 2 **Technique:** Non-single diffractive (NSD) □ Tracks from pixel hit triplet 10² 10 10 √s (GeV) seeding =1.9 □ Tracking down to pt>75 =1.7 MeV! (avoid large extrapol =1.5 10⁰ to pt=0!) 450 0.60 < p < 0.65 GeV/c 400 □ K/pi/p separation using χ^2 /ndf = 2.30 350 dE/dx in tracker possible 300 □ 1.9M events (1Hz @ 1 Ē 250 200 Month) 10⁻⁵ 150 10 20 30 Number of hits Corrected distributions 100 50 CMS Preliminar 2 я 12 o 10 simulation

PT [GeV/c]

2.5

1.5

log(dE/dx [MeV/cm])

0

0.5

2

Charged Hadron Multiplicity (cont.)

Largest exp. Syst.: misalignment

CMS Preliminary

Trigger efficiency: Single Diffractive ~60% **Double Diffractive** ~70% Not Diffractive ~99%

Summary of systematic uncertainties

ISR

UA1

E735

CDF CMS

10⁴

n

Track selection cuts	2%
Mis-estimate of secondaries	1.5%
Vertex reconstruction	0.1%
Mis-alignment	6%
Beam-gas & pile-up	1%
Particle composition	2%
Diffractive cross-	4%
sections	170
Total:	<mark>8</mark> %
	Track selection cuts Mis-estimate of secondaries Vertex reconstruction Mis-alignment Beam-gas & pile-up Particle composition Diffractive cross- sections Total:

Underlying Event

dN/dødŋ

- Underlying event is everything BUT the hard scatter
 - ISR+FSR, beam remnants, multiple parton interactions (MPI)
- Motivation:
 - Understanding of MPI @ 14 TeV
 - Tuning of MC models
- Measurement possibility:
 - Charged particle mult. / mom. density in region transverse to leading jet (c.f. R.Field)
- Expectation:
 - Activity ~2 times higher than Tevatron

Underlying Event (cont.)

WJet Reconstruction and Calibration

- Jet algoritms used:
 - SISCone, Kt, Iterative cone (various R,D values)
- Input:

0.45_□

- Calorimeter towers
- (tracks and particle flow)

- Jet Energy Calibration:
 - □ <u>CMS:</u> factorized multi-level correction
 - 1. Offset correction (pileup, noise, thres.)
 - 2. Rel. response correction in eta (dijets)
 - 3. Abs. correction to particle level (Z/gamma + jet, ttbar)

□ <u>ATLAS</u>: local hadron calibration

- o Calibrate clusters to particle scale (before jet algo.)
- o Make jets out of calibrated clusters

Optional: parton corrections

o Flavour, underlying event, parton level

Dijet Azimuthal Decorrelations Distance in phi between leading and 2nd jet in "dijet" events sensitive to gluon radiation effects **Tuning of MC models (FSR, higher order diagrams) ATLAS** comparison between generated and reconstructed distributions: Run 178796 Event 67972991 Fri Feb 27 08:34:15 200 ET scale: 436 GeV $\Delta \phi$ dijet = $\pi \rightarrow$ $\Delta \phi$ dijet as small as $2\pi/3 \rightarrow$ Exactly two jets, no further radiation One additional high-pT jet $\Delta \phi$ dijet small deviations from $\pi \rightarrow$ $\Delta \phi$ dijet small – no limit \rightarrow Additional soft radiation outside the jets Multiple additional hard jets in the event 600 < ET MAX < 1200 GeV 300 < ET MAX < 600 GeV 10 102 $1/\sigma_{dijet} d\sigma_{dijet} / \Delta \phi_{dijet}$ $/\sigma_{\text{dijet}} \mathbf{d} \sigma_{\text{dijet}} / \Delta \phi_{\text{dijet}}$ Reconstructed Reconstructed MC = Pythia ATLAS tune MC = Pythia ATLAS tune 10 10 ATLAS jet sample (J5) ATLAS jet sample (J6) 300 < E, max < 600 GeV 600 < E, max < 1200 GeV Cone - R=0.7 Cone - R=0.7 10-1 10^{-1} R=0.7 102 10-2 |η_{iet}|< 0.5 ET_{iet #2} > 80 GeV 10^{-3} 10-3 160 100 120 140 180 100 120 140 160 180

 $\Delta \phi_{\text{dijet}}$

 $\Delta \phi_{\text{dijet}}$

Event Shapes

- Normalized event shapes robust against JES uncertainties
 - Suitable for early data analysis (central region)
- Collinear and infrared safe observables
- Study multijet production, compare with MC models

Central transverse thrust

Central thrust minor

Inclusive Jet Cross Section

Inclusive Jet Cross Section: Errors

Top Quark Physics

g

- LHC will be "top factory"
 BM ttbar events per year (10fb-1 @ 14 TeV)
- Production dominantly gluon
 induced
- At 10 TeV, ttbar cross section drops by ~50%, e.g arXiv:0804.2800:
 - NLO+NLL, CTEQ6.5, mtop=171 GeV:
 - □ Sigma (14 TeV) = 908 +/- 83 (sc.) +/- 30 (pdf) pb
 - □ Sigma (10 TeV) = 414 +/- 40 (sc.) +/- 20 (pdf) pb

Top Quark Physics (cont.)

- In the beginning, focus on channels with leptonic W decay(s)
 - Dilepton channel
 - o Two leptons, >=2 jets, MET
 - Lepton+jets channel
 - o One lepton, >=4 jets, MET
 - "Easier" w.r.t. trigger, QCD background
- Top Physics Program
 - "Rediscovery" and cross section at LHC energies
 - Differential cross sections, validate MC (background for searches)
 - Ttbar resonances
 - Properites (mass, spin, charge..)
 - Single top

- Ttbar events as commissioning tool
 - Understanding of most physics objects required (leptons, jets, MET, b-tagging)
 - Use to constrain JES and b-tag efficiency

Rediscovery: Muon+Jets

- Simple and robust event selection
 - One tightly isolated muon, Pt>30 GeV
 - □ At least 4 jets, Et>65,40,40,40 GeV
- No b-tagging, no MET
- For 10pb-1: expect 128 / 90 signal / background events

Lepton+Jets

- ATLAS event selection for 100pb-1
 - □ One lepton (e or mu) with Pt>20 GeV
 - □ MET > 20 GeV
 - >=4 jets with Et>40,40,40,20 GeV
 - W-mass constraint
- Optionally
 - Mtop window

B-tagging

QCD not included ... "comparable to W+jets"

Muon analysis							
Sample	default	W const.	m_t win	W const.	W const.	W const.	
				+ $ \eta < 1$	+ 1 b-tag	+ 2 b-tag	
Signal	3274	1606	755	386	403	280	
Background	1497	495	143	84	42	14	
S/B	2.2	3.2	5.3	4.6	9.6	20.1	

Cross section extraction from fit to mass

Dilepton channel

DYμμ

DYee

DYττ

wjets

ΖZ

CMS Preliminary

•ee

12

- 2 isolated leptons (ee,mumu, emu), Pt>20 GeV
 DY veto
- MET>20/30 GeV
- >=2 jets, Et> 30 GeV
- DY veto
- For 10pb-1, expect 10% stat error combined
- If MET, cannot be controlled, do emu only (stat err. 13%)

Dilepton cross section

Event selection: ්දු 350 Events/100 tī∥ ATLAS Ζττ 2 leptons, pt> 20 GeV ww Jets with Et> 20 GeV W7 Jo 200 Jo 150 N 77 MET>30 GeV, DY veto Zee Ζμμ ∎tt I+i 100 We **Cross section measurement** Wμ 50 □ Fit MET vs Njets templates for signal and background Number of Jets Ztautau •WW Significance $\sigma_{_{\rm H}}$ 2520 ATLAS Establish signal with 15 WW niets $L < 10 pb^{-1}$ 10 **Expected precision for 100pb-**Systematics included 1 (incl. syst.): $\Delta \sigma / \sigma = (4(\text{stat}) \pm 4(\text{sys}) \pm 2(\text{pdf}) \pm 5(\text{lumi}))\%$ 20 160 180 200 80 100 Integrated luminosity (pb⁻¹)

Top as Calibration tool

- Light Jet Energy Scale (ATLAS)
 - Semileptonic events
 - 2 b-tagged jets
- Apply template fits to inv mass of 2 light jets
 - JES to 2% in 50pb-1 (0.5% syst.)
 1% with 1fb-1 possible

- B-tagging efficiency (CMS)
 - Selection of high-purity dilepton ttbar events
 - Purity of b-content in selected sample: 44%
 - □ Rel. uncertainty on btag eff.
 - o 1 fb⁻¹: 6%
 - o 10 fb⁻¹: 4%

Top Mass

Various channels+methods studied by both experiments, here only two examples See talk by Lucia Di Ciaccio for details

- ATLAS lepton+jets, 1fb-1
 - Semileptonic event selection
 - 2 b-tags
 - Geometric reconstruction:
 - W candidate from min dR(jet,jet)
 - Top candidate min dR (W.b-iet)

 $m_t = 174.6 \pm 0.5 (stat) \pm 0.7 / \% (b-JES) \pm 0.2 / \% (JES) \pm 0.4 (ISR/FSR) \pm 0.1 (b fragmentation) GeV$

□ 1...3.5 GeV, dep. On b-JES precision

- CMS dilepton channel
 - Experimental error dominated by jet energy scale, known to
 - o 15% at 1 fb⁻¹: $\Delta m \sim 4.2 \text{ GeV}$
 - o 10...3.0% for 1...10 fb⁻¹ ∆m ~ 2.9 GeV
 - o 1.5% longer term: $\Delta m \sim 1.0 \text{ GeV}$

 $\Delta m_t = 1.5 (0.5) (stat.) +/- 2.9 (1.1) (syst.) GeV$ @ 1 (10) fb⁻¹

Ttbar resonances

Motivation

- High potential to discover new physics by searching for new resonances / gauge bosons in pp->X->ttbar (large Yukawa coupling)
- Manifest in M(ttbar) distribution (shape distort., peak)
- Experimental issues at high M(ttbar)
 - Top decay products closeby (boost): breakdown of isolation, jet merging
 - Breakdown of b-tagging
 - □ Efforts ongoing ...
- ATLAS Study:
 - Standard M(ttbar) reco in lepton+jets
 - □ KK gluon resonances can be excluded with 1fb-1 up to 1.5 TeV

Single Top (cont.)

•t-channel: mtop

• ATLAS: new studies of all single top channels using various

methods			method	S/B	\mathcal{L}	xsec precision	
	t-c	han	cuts	0.37	1fb ⁻¹	$\pm5\%\pm45\%$	
	/ t-c	han	BDT	1.3	1fb ⁻¹	$\pm6\%\pm22\%$	
		Wt	BDT	0.35	10fb ⁻¹	\pm 20%	
	∫ s-c	han	likelihood	0.19	30fb ⁻¹	3σ evidence	
		40//		40/ /11	``		

 $|V_{tb}|$: ± 11%(stat+sys) ± 4%(theor)

Conclusions

- Rich program for early QCD and Top Quark Physics at LHC
- QCD: probe of strong interactions in new regime
 Low Pt QCD:
 - o MC model tuning with early data
 - o Measurement of multiple partonic interactions
 - □ High Pt QCD:
 - o Confront data with pQCD calculations at very high Q^2
 - o Input to PDF/alpha-s determinations
 - o New physics at very high Pt
- Top Quark Physics:
 - □ Rediscovery possible already at low luminosities
 - Measurements of x.s., mass and other properties
 - □ Window to new physics (ttbar resonances)

• Crucial to understand SM backgrounds before any new physics signal can be claimed!