

Observation of Electron Anti-neutrino Disappearance at Daya Bay

Yifang Wang Institute of High Energy Physics CERN, March 20, 2012

<u>Outline</u>

Introduction

- Data set & quality control
- Calibration and Event reconstruction
- Event selection
- Backgrounds & uncertainties
- Efficiencies & systematic errors
- Expectation
- Results of neutrino oscillation

Summary

F.P. An et al., Daya Bay Coll., "A side-by-side comparison of Daya Bay antineutrino detectors", arXiv: 1202.6181[physics.ins-det], submitted to NIM F.P. An et al., Daya Bay Coll., "Observation of electron anti-neutrino disappearance at Daya Bay", arXiv: 1203.1669[hep-ex], submitted to PRL

Neutrinos & Neutrino Oscillation

Fundamental building blocks of matter:

$$\begin{pmatrix} e & \mu & \tau \\ \hline \mathbf{v}_e & \mathbf{v}_\mu & \mathbf{v}_\tau \end{pmatrix} \qquad \begin{pmatrix} u & c & t \\ d & s & b \end{pmatrix}$$

Neutrino mass: the central issue of neutrino physics

- ⇒ Tiny mass but huge amount
- ⇒ Influence to Cosmology: evolution, large scale structure, ...
- ⇒ Only evidence beyond the Standard Model
- Neutrino oscillation: a great method to probe the mass

$$v_e$$
 v_{μ} v_e v_{μ} Oscillation
probability: $P(v_e \rightarrow v_{\mu}) = \sin^2(2\theta) \sin^2(1.27 \Delta m^2 L/E)$
Oscillation
amplitudeOscillation
frequency

Daya Bay: for a New Type of Oscillation

• Goal: search for a new oscillation θ_{13}

$$\theta_{12} \text{ solar neutrino oscillation} \qquad \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \qquad \begin{array}{c} \theta_{13} \end{array}$$

Neutrino mixing matrix:

$$\mathbf{V} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{c_{23}} & \mathbf{s_{23}} \\ \mathbf{0} & -\mathbf{s_{23}} & \mathbf{c_{23}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{13}} & \mathbf{0} & \mathbf{s_{13}} \\ \mathbf{0} & \mathbf{e^{-i\delta}} & \mathbf{0} \\ -\mathbf{s_{13}} & \mathbf{0} & \mathbf{c_{13}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{12}} & \mathbf{s_{12}} & \mathbf{0} \\ -\mathbf{s_{12}} & \mathbf{c_{12}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{e^{i\rho}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{e^{i\sigma}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

Unknown mixing parameters: θ_{13} , δ + 2 Majorana phases

Need sizable θ_{13} for the δ measurement

2012/3/22

Two ways to measure θ_{13}

Reactor experiments:

$$\begin{split} P_{ee} &\approx 1 - \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{13}^2 L/E) - \\ &\quad \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E) \end{split}$$
 $\begin{aligned} \text{Long baseline accelerator experiments:} \\ P_{\mu e} &\approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{23}^2 L/E) + \\ &\quad \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E) - \end{aligned}$

 $A(\rho) \bullet \cos^2 \theta_{13} \sin \theta_{13} \bullet \sin(\delta)$

At reactors:

- \blacktriangleright Clean signal, no cross talk with δ and matter effects
- Relatively cheap compared to accelerator based experiments
- Provides the direction to the future of neutrino physics

Direct Searches in the Past

Double Chooz: 1.7 σ

 $\sin^2 2\theta_{13} = 0.086 \pm 0.041 (\text{stat}) \pm 0.030 (\text{sys})$

Reactor Experiment: comparing observed/expected neutrinos

Our design goal: a precision of ~ 0.4%

2012/3/22

Daya Bay Experiment: Layout

- Relative measurement to cancel Corr. Syst. Err.
 - ⇒ 2 near sites, 1 far site
- Multiple AD modules at each site to reduce Uncorr. Syst. Err.
 - ⇒ Far: 4 modules, near: 2 modules
 Cross check; Reduce errors by 1/√N
- Multiple muon detectors to reduce veto eff. uncertainties
 - ➡ Water Cherenkov: 2 layers
 - ⇒ **RPC:** 4 layers at the top + telescopes

Underground Labs

	Overburden (MWE)	$\frac{R_{\mu}}{(Hz/m^2)}$	Ε _μ (GeV)	D1,2 (m)	L1,2 (m)	L3,4 (m)
EH1	250	1.27	57	364	857	1307
EH2	265	0.95	58	1348	480	528
EH3	860	0.056	137	1912	1540	1548

2012/3/22

Anti-neutrino Detector (AD)

Three zones modular structure:

 target: Gd-loaded scintillator
 γ-catcher: normal scintillator
 buffer shielding: oil
 192 8" PMTs/module

 Two optical reflectors at the top and the bottom, Photocathode coverage increased from 5.6% to 12%

Target: 20 t, 1.6m γ-catcher: 20t, 45cm Buffer: 40t, 45cm Total weight: ~110 t

Neutrino Detection: Gd-loaded Liquid Scintillator

$$\overline{v}_e + p \rightarrow e^+ + n$$

 $\tau \approx 28 \ \mu s(0.1\% \text{ Gd})$

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

 $n + Gd \rightarrow Gd^* + \gamma (8 \text{ MeV})$

Neutrino Event: coincidence in time, space and energy

Neutrino energy:

$$E_{\overline{v}} \cong (T_{e^+}) + T_n + (M_n - M_p) + m_{e^+}$$

10-40 keV 1.8 MeV: Threshold

Gd-loaded Liquid Scintillator

- Liquid production, QA, storage and filling at Hall 5
 - ⇒ 185t Gd-LS, ~180t LS, ~320t oil
- LAB+Gd (TMHA)³+PPO+BisMSB
- Stable over time
 - ⇒ Light yield: ~163 PE/MeV

Liquid hall: LS production and filling

Automatic Calibration System

- Three Z axis:
 - ⇒ One at the center
 - ✓ For time evolution, energy scale, nonlinearity...
 - ⇒ One at the edge
 - ✓ For efficiency, space response
 - \Rightarrow One in the γ -catcher
 - ✓ For efficiency, space response
 - **3 sources for each z axis:**
 - ⇒ LED
 - \checkmark for T₀, gain and relative QE
 - $\Rightarrow \quad {}^{68}\text{Ge} \left(2 \times 0.511 \text{ MeV } \gamma \text{'s}\right)$
 - ✓ for positron threshold & non-linearity...
 - \Rightarrow ²⁴¹Am-¹³C + ⁶⁰Co (1.17+1.33 MeV γ 's)
 - ✓ For neutron capture time, ...
 - ✓ For energy scale, response function, ...
- Once every week:
 - ⇒ 3 axis, 5 points in Z, 3 sources

Muon Veto Detector

Two active cosmic-muon veto's
Water Cerenkov: Eff.>97%
RPC Muon tracker: Eff. > 88%

RPCs

- ➡ 4 layers/module
- ⇒ 54 modules/near hall, 81 modules/far hall
- ⇒ 2 telescope modules/hall
- Water Cerenkov detector
 - ➡ Two layers, separated by Tyvek/PE/Tyvek film
 - 288 8" PMTs for near halls; 384
 8" PMTs for the far hall

Water processing

- ➡ High purity de-ionized water in pools also for shielding
- ⇒ First stage water production in hall 4
- ⇒ Local water re-circulation & purification

Two ADs Installed in Hall 1

Hall 1(two ADs) Started the Operation on Aug. 15, 2011

One AD insalled in Hall 2 Physics Data Taking Started on Nov.5, 2011

Three ADs insalled in Hall 3 Physics Data Taking Started on Dec.24, 2011

Trigger Performance

• Threshold for a hit:

⇒ AD & pool: ¼ PE

Trigger thresholds:

- \Rightarrow AD: ~ N_{HIT}=45, E_{tot}= ~ 0.4 MeV
- → Inner pool: N_{HIT}=6
- ➡ Outer pool: N_{HIT}=7 (8 for far hall)
- ⇒ RPC: 3/4 layers in each module

Trigger rate(EH1)

- ⇒ AD singles rate:
 - ✓ >0.4MeV, ~ 280Hz
 - ✓ >0.7MeV, ~ 60Hz
- → Inner pool rate: ~170 Hz
- ➡ Outer pool rate: ~ 230 Hz

Data Set

- Dec. 24, 2011- Feb. 17, 2012, 55 days
- Data volume: 15TB
- DAQ eff. ~ 97%
- Eff. for physics: ~ 89%

Flashers: Imperfect PMTs

- ~ 5% of PMT, 5% of event
- **Rejection: pattern of fired PMTs**
 - ➡ Topology: a hot PMT + near-by PMTs and opposite PMTs

Inefficiency to neutrinos: 0.024%±0.006%(stat) Contamination:<0.01%

MaxQ = maxQ/sumQ

2012/3/22

Single Rate: Understood

- Design: ~50Hz above 1 MeV
- Data: ~60Hz above
 0.7 MeV, ~40Hz
 above 1 MeV
- From sample purity and MC simulation, each of the following component contribute to singles
 - → ~ 5 Hz from SSV
 - → ~ 10 Hz from LS
 - → ~ 25 Hz from PMT
 - → ~ 5 Hz from rock

All numbers are consistent

Event Reconstruction: PMT Calibration

Gains' average [ADC]

PMT gains from low-intensity LED:

- ⇒ PMT HV is set for a gain of 1×10⁷
- ⇒ Gain stability depends on environments such as temperature → All three halls are kept in a temperature within ± 1 °C

Event Reconstruction: Energy Calibration

- PMT gain calibration → No. of PEs in an AD
 ⁶⁰Co at the center → raw energies,
 ⇒ time dependence corrected
 ⇒ different for different ADs
 ⁶⁰Co at different R & Z to obtain the correction function, f(R,Z) = f₁(R) * f₂(Z)
 ⇒ space dependence corrected
 - \Rightarrow same for all the ADs

Event Reconstruction: Energy Calibration

- Correct for energy non-linearity: normalize to neutron capture peak
- Energy uncertainty among 6 ADs (uncorrelated):
 - ⇒ Relative difference between ADs is better than 0.5%
 - ➡ Uncertainties from time-variation, non-linearity, non-uniformity... are also within 0.5%

An Alternative Method

- Using spallation neutrons in each space grid to calibrate the energy response
- Neutrons from neutrinos can then be reconstructed correctly
- Consistent with methods within 0.5%

Energy of spallation neutron

Residual non-uniformities

Event Signature and Backgrounds

- Signature: $\overline{v}_e + p \rightarrow e^+ + n$
 - \Rightarrow **Prompt:** e⁺, **1-10 MeV**,
 - ⇒ Delayed: n, 2.2 MeV@H, 8 MeV @ Gd
 - ⇒ Capture time: 28 µs in 0.1% Gd-LS

Backgrounds

- \Rightarrow Uncorrelated: random coincidence of $\gamma\gamma$, γ n or nn
 - γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
 - ✓ n from α -n, μ -capture, μ -spallation in LS, water & rock
- ⇒ Correlated:
 - ✓ Fast neutrons: prompt—n scattering, delayed —n capture
 - ✓ ⁸He/⁹Li: prompt β decay, delayed n capture
 - Am-C source: prompt—γ rays, delayed—n capture
 - ✓ α-n: ${}^{13}C(α,n){}^{16}O$

Neutrino Event Selection

Pre-selection

- ⇒ Reject Flashers
- \Rightarrow Reject Triggers within (-2 µs, 200 µs) to a tagged water pool muon
- Neutrino event selection
 - ⇒ Multiplicity cut
 - ✓ Prompt-delayed pairs within a time interval of $200 \, \mu s$
 - ✓ No triggers(E > 0.7 MeV) before the prompt signal and after the delayed signal by 200 µs
 - ⇒ Muon veto
 - ✓ *1s* after an AD shower muon
 - ✓ *1ms* after an AD muon
 - ✓ *0.6ms* after an WP muon
 - \Rightarrow 0.7MeV < E_{prompt} < 12.0MeV
 - \Rightarrow 6.0MeV < E_{delayed} < 12.0MeV
 - $\Rightarrow \quad 1\mu s < \Delta t_{e^+-n} < 200\mu s$

Selected Signal Events: Good Agreement with MC

Accidental Backgrounds

Simple calculation:

$$N_{\text{accBkg}} = \sum_{i} N_{\text{n-like singles}}^{i} \bullet \left(1 - e^{-\frac{R_{e^+ - \text{like triggers}}^{i} \bullet 200\,\mu s}{e^+ - \text{like triggers}}}\right) \pm \frac{N_{\text{accBkg}}}{\sqrt{\sum_{i} N_{\text{n-like singles}}^{i}}}$$

	EH1-AD1	EH1-AD2	EH2-AD1	EH3-AD1	EH3-AD2	EH3-AD3
Rate(/day)	9.82 ± 0.06	9.88±0.06	7.67 ± 0.05	3.29 ± 0.03	3.33±0.03	3.12 ± 0.03
B/S	1.37%	1.38%	1.44%	4.58%	4.77%	4.43%
012/3/22			* -			3

30

Cross Check: Outside the space and time window

- Prompt-delayed distance distribution. Check the fraction of prompt-delayed pair with distance>2m
- ♦ Off-window coincidence →
 'measure' the accidental
 background
- Results in agreement within 1%.

Uncertainty: <1%

Fast Neutrons

- Look at the prompt energy spectrum above 12 MeV, to estimate backgrounds in the region of [0.7MeV, 12MeV]:
 - A fit to the spectrum in the region of [12MeV, 80 MeV] → extrapolate to [0.7MeV, 12 MeV]
 - ⇒ Difference of the fitting function, 0th-order or 1st-order polynomial, gives systematic uncertainties

Cross Check: sum up all the sources

Fast neutrons from water pools

- Obtain the rate and energy spectrum of fast neutrons by tagged muons in water pool. Consistent with MC simulation.
- Estimate the untagged fast neutron by using water pool inefficiency

• Fast neutrons from nearby rock

➡ Estimated based on MC simulation

	Fast neutron (event/day)	Cross checks(event/day)
AD1	0.84 ± 0.28	0.6 ± 0.4
AD2	0.84 ± 0.28	0.6 ± 0.4
AD3	0.74 ± 0.44	0.6 ± 0.4
AD4	0.04 ± 0.04	0.04 ± 0.04
AD5	0.04 ± 0.04	0.04 ± 0.04
AD6	0.04 ± 0.04	0.04 ± 0.04

Results are consistent

<u>Backgrounds –⁸He/⁹Li</u>

Cosmic μ produced ⁹Li/⁸He in LS

- $\Rightarrow \beta$ -decay + neutron emitter
- $\Rightarrow \tau(^{8}\text{He}/^{9}\text{Li}) = 171.7\text{ms}/257.2\text{ms}$
- \Rightarrow ⁸He/⁹Li, Br(n) = 12%/48%, ⁹Li dominant
- \Rightarrow **Production rate follow** $E_{\mu}^{0.74}$ **power law**
- Measurement:
 - ➡ Time-since-last-muon fit

$$f(t) = B/\lambda \cdot e^{-t/\lambda} + S/T \cdot e^{-t/T}$$

- Improve the precision by reducing the muon rate:
 - ✓ Select only muons with an energy deposit
 >1.8MeV within a [10us, 200us] window
 - ✓ Issue: possible inefficiency of ⁹Li
- Results w/ and w/o the reduction is studied

Error follows

$$\sigma_b = \frac{1}{N} \cdot \sqrt{(1 + \tau R_\mu)^2 - 1}$$

NIM A564 (2006)471

Measurement in EH1+EH2 & Prediction in EH3

- Measurement in EH1/EH2 with good precision, but EH3 suffers from poor statistics
- Results w/ and w/o the muon reduction consistent within 10%
- Correlated ⁹Li production (E_μ^{0.74} power law) allow us to further constraint ⁹Li yield in EH3
- Cross check: Energy spectrum consistent with expectation

²⁴¹Am-¹³C Backgrounds

Uncorrelated backgrounds:

$R = 50 \text{ Hz} \times 200 \,\mu\text{s} \times R_{n\text{-like}} (\text{events/day/AD})$

- ➡ R_{n-like} Measured to be ~230/day/AD, in consistent with MC Simulation
- ⇒ R is not a negligible amount, particularly at the far site $(B/S \sim 3.17\%)$
- Measured precisely together with all the other uncorrelated backgrounds

Correlated backgrounds:

- ➡ Neutron inelastic scattering with ⁵⁶Fe + neutron capture on ⁵⁷Fe
- Simulation shows that correlated background is 0.2 events/day/AD, corresponding to a B/S ratio of 0.03% at near site, 0.3% at far site

Uncertainty: 100%

Backgrounds from ¹³C(α,n)¹⁶O

- Identify a sources:
 ²³⁸U, ²³²Th, ²²⁷Ac, ²¹⁰Po,...
- Determine α rate from cascade decays
- Calculate backgrounds from α rate + (α,n) cross sections

	Components	Total α rate	BG rate
Region A	Acc. Coincidence of ²¹⁰ Po & ²¹⁰ Po	²¹⁰ Po:	
Region B	Acc. Coincidence of ²¹⁰ Po & ⁴⁰ K	10Hz at EH1	0.02/day at EH1
Region C	Acc. Coincidence of ⁴⁰ K & ²¹⁰ Po	8Hz at EH2	0.015/day at EH2
Region D	Acc. Coincidence of ²⁰⁸ Tl & ²¹⁰ Po	6Hz at EH3	0.01/day at EH3
Region E	Cascade decay in ²²⁷ Ac chain	1.4 Bq	0.01/day
Region F	Cascade decay in ²³⁸ U chain	0.07Bq	0.001/day
Region G	Cascade decay in ²³² Th chain	1.2Bq	0.01/day

Uncertainty: 50%

Signals and Backgrounds

	AD1	AD2	AD3	AD4	AD5	AD6
Neutrino candidates	28935	28975	22466	3528	3436	3452
DAQ live time (day)	49.5	530	49.4971		48.9473	
Veto time (day)	8.7418	8.9109	7.0389	0.8785	0.8800	0.8952
Efficiency $\epsilon_{\mu} * \epsilon_m$	0.8019	0.7989	0.8363	0.9547	0.9543	0.9538
Accidentals (/day)	9.82 ± 0.06	$9.88\!\pm\!0.06$	7.67 ± 0.05	3.29 ± 0.03	3.33 ± 0.03	3.12 ± 0.03
Fast neutron (/day)	$0.84 {\pm} 0.28$	0.84 ± 0.28	0.74 ± 0.44	0.04 ± 0.04	0.04 ± 0.04	0.04 ± 0.04
⁸ He/ ⁹ Li (/day)	3.1=	±1.6	1.8 ± 1.1		$0.16 {\pm} 0.11$	
Am-C corr. (/day)			$0.2\pm$	0.2		
$^{13}C(\alpha, n)^{16}O$ background (/day)	$\begin{array}{c} 0.04 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.04 \\ \pm 0.02 \end{array}$	0.035 ± 0.02	$\begin{array}{c} 0.03 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.03 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.03 \\ \pm 0.02 \end{array}$
Neutrino rate (/day)	$714.17 \\ \pm 4.58$	$717.86 \\ \pm 4.60$	532.29 ±3.82	71.78 ±1.29	$\begin{array}{c} 69.80 \\ \pm 1.28 \end{array}$	70.39 ± 1.28

Signal+Backgound Spectrum

Energy Cuts Efficiency and Systematics

Spill-in effect and Systematics

- Neutrons generated in acrylic and LS can spill into Gd-LS and be captured on Gd.
- Simulation shows that Gd capture is increased by 5%.
- The relative differences in acrylic vessel thickness, acrylic density and liquid density are modeled in MC

Muon Veto and Multiplicity Cut

Muon veto

- Total veto time is the sum of all the veto time windows
- → Temporal overlap is taken into account
- Multiplicity cut
 - $\Rightarrow \quad \mathbf{Efficiency} = \varepsilon_1 \times \varepsilon_2 \times \varepsilon_3$
- Total efficiency
 - Uncertainty coming mainly from the average neutron capture time. It is correlated.

Prompt-delayed pairs within 200 μs No triggers before the prompt and after the delayed signal by 200 μs

Gd Capture Fraction: H/Gd and Systematics

- Uncertainty is large if takes simply the ratio of area
- ♦ Relative Gd content variation 0.1%
 → evaluated from neutron capture time
- Geometry effect on spill-in/out
 0.02% → relative differences in acrylic thickness, acrylic density and liquid density are modeled in MC

Neutron capture time from Am-C

<u>Time Correlation Cut:</u> 1μs < Δt_{e-n} < 200μs

 Uncertainty comes from Gd concentration difference and possible trigger time walk effect (assuming 20ns)

	Eff.	Corr.	Un-corr.
Capture time cut	98.6%	0.12%	0.01%

<u>Livetime</u>

Synchronization of 3 Halls

- ⇒ Divide data taking time into one-hour slices
- ⇒ Discard data in a whole slice if not all 3 halls are running

• Uncertainty

- → Comes from the case when electronics buffer is full.
- ⇒ This estimated to be less than 0.0025%, by either blocked trigger ratio or accumulating all buffer full periods.

	Eff.	Corr.	Un-corr.
Livetime	100%	0.002%	< 0.01%

Alternative Analysis

- Using an alternative energy calibration algorithm based on spallation neutron peak
- Different neutrino selection criteria
 - ➡ Muon cut: 0.4s after an AD shower muon (different shower muon threshold), 1.4ms after an AD muon, 0.6ms after a WP muon
 - → A different multiplicity cut
- Results: consistent within statistical errors

Side-by-side Comparison

Expected ratio of neutrino events: R(AD1/AD2) = 0.981
 The ratio is not 1 because of target mass, baseline, etc.

Measured ratio: 0.987 ± 0.008(stat) ± 0.003(syst)

This final check shows that systematic errors are under control

• Baseline

- Target mass
- Reactor neutrino flux

- These three predictions are blinded before we fix our analysis cuts and procedures
- They are opened on Feb. 29, 2012
- The physics paper is submitted to PRL on March 7, 2012

<u>Baseline</u>

Survey:

- Methods: GPS, Total Station, laser tracker, level instruments, ...
- Results are compared with design values, and NPP coordinates
- Data processed by three independent software
- Results: sum of all the difference less than 28 mm
- Uncertainty of the fission center from reactor simulation:
 - ⇒ 2 cm horizontally
 - ⇒ 20 cm vertically
- The combined baseline error is 35mm, corresponding to a negligible reactor flux uncertainty (<0.02%)

Target Mass & No. of Protons

- ◆ Target mass during the filling measured by bellows the load cell, precision ~ 3kg → 0.015%
- Checked by Coriolis flow meters, precision ~ 0.1%
- Actually target mass:

 $\mathbf{M}_{target} = \mathbf{M}_{fill} - \mathbf{M}_{overflow} \text{ - } \mathbf{M}_{bellow}$

- M_{overflow} and M_{bellows} are determined by geometry
- **M**_{overflow} is monitored by sensors

Quantity	Relative/	Absolute
Free protons/Kg	neg.	0.47%
Density	neg.	0.0002%
Total mass	0.015%	0.015%
Bellows	0.0025%	0.0025
Overflow tank	0.02%	0.02%
Total	0.03%	0.47%

One batch LAB

Reactor Neutrinos

Reactor neutrino spectrum

$$S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i}^{istopes} (f_i/F)S_i(E_{\nu})$$

- Thermal power, W_{th}, measured by KIT system, calibrated by KME method
- Fission fraction, f_i, determined by reactor core simulation
- Neutrino spectrum of fission isotopes
 S_i(E_v) from measurements
- Energy released per fission e_i

Isotope	E_{fi} , MeV/fission
$^{235}\mathrm{U}$	201.92 ± 0.46
$^{238}\mathrm{U}$	205.52 ± 0.96
239 Pu	209.99 ± 0.60
$^{241}\mathrm{Pu}$	213.60 ± 0.65

Kopeikin et al, Physics of Atomic Nuclei, Vol. 67, No. 10, 1892 (2004)

	R	eactor	
Correla	ited	Unco	orrelated
Energy/fission	0.2%	Power	0.5%
$\overline{\nu}_{e}$ /fission	3%	Fission fraction 0.6%	
		Spent fuel	0.3%
Combined	3%	Combined	0.8%

Relative measurement → independent from the neutrino spectrum prediction

Daily Rate

- Three halls taking data synchronously allows near-far cancellation of reactor related uncertainties
- Rate changes reflect the reactor on/off.

Predictions are absolute, multiplied by a normalization factor from the fitting

Complete Efficiency and Systematics

	Dete	ctor			
	Efficiency	Correlated	Uncorrelated		
Target Protons		0.47%	0.03%		
Flasher cut	99.98%	0.01%	0.01%		
Delayed energy cut	90.9%	0.6%	0.12%		
Prompt energy cut	99.88%	0.10%	0.01%		
Multiplicity cut		0.02%	$<\!0.01\%$		
Capture time cut	98.6%	0.12%	0.01%		
Gd capture ratio	83.8%	0.8%	< 0.1%		
Spill-in	105.0%	1.5%	0.02%		
Livetime	100.0%	0.002%	$<\!0.01\%$	TDR:	(0.18 - 0.38) %
Combined	78.8%	1.9%	0.2%		
	Rea	ctor			
Correlated	d	Unco	orrelated		
Energy/fission	0.2%	Power	0.5%		
$\overline{\nu}_{e}$ /fission	3%	Fission fracti	on 0.6%		
		Spent fuel	0.3%		
Combined	3%	Combined (0.8%		

Electron Anti-neutrino Disappearence

Using near to predict far:

$$R = \frac{Far_{measured}}{Far_{expected}} = \frac{M_4 + M_5 + M_6}{\sum_{i=4}^{6} (\alpha_i (M_1 + M_2) + \beta_i M_3)}$$

 $M_{i} = \frac{IBD_{i} - B_{i}^{Acc} - B_{i}^{FNeutron} - B_{i}^{9Li/8He} - B_{i}^{AmC} - B_{i}^{\alpha-n}}{\epsilon_{i}^{muon}\epsilon_{i}^{multi}TMass_{i}}$

Determination of α, β: 1)Set R=1 if no oscillation 2)Minimize the residual reactor uncertainty

Observed: 9901 neutrinos at far site, Prediction: 10530 neutrinos if no oscillation

 $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

<u>χ² Analysis</u>

Future plan

- Assembly of AD7 and AD8 is underway now, to be completed before summer
- Current data taking will continue until the summer
- Summer activities:
 - ➡ Installation of AD7 & AD8
 - ⇒ Detector calibration
- Re-start data taking after summer

The Daya Bay Collaboration

Political Map of the World, June 1999

Europe (2) JINR, Dubna, Russia Charles University, Czech Republic

North America (16)

BNL, Caltech, LBNL, Iowa State Univ.,
Illinois Inst. Tech., Princeton, RPI,
UC-Berkeley, UCLA, Univ. of Cincinnati,
Univ. of Houston, Univ. of Wisconsin,
William & Mary, Virginia Tech.,
Univ. of Illinois-Urbana-Champaign, Siena

~250 Collaborators

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ.,

Asia (20)

Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

 Electron anti-neutrino disappearance is observed at Daya Bay,

 $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)},$

together with a spectral distortion

• A new type of neutrino oscillation is thus discovered

Sin²2 θ_{13} =0.092± 0.016 (stat)±0.005(syst) χ^2 /NDF = 4.26/4 5.2 σ for non-zero θ_{13}