Preparatory experiments at LISOL to perform In Gas Laser Ionization and Spectroscopy (IGLIS) @ S³

R. Ferrer^a, B. Bastin^b, P. Delahaye^b, S. Franchoo^c, M. Huyse^a, Yu. Kudryavtsev^a, N. Lecesne^b, F. Luton^b, J. Piot^b, H. Savajols^b, A. M. Sjodin^b, E. Traykov^b, and P. Van Duppen^a

^aInstituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium ^bGANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen, France ^cInstitut de Physique Nucleaire (IPN) d'Orsay, 91406 Orsay, Cedex, France

Motivation

Production of purified rare isotope beams in the N=Z and heavy elements region to study nuclear-structure effects

DAY 1 @ S3 → Laser spectroscopy of:

\Box ⁹⁴Ag

High-spin isomerism, b-delayed p, 1- and 2-p emission □ ⁸⁰Zr (spk. person: B. Bastin) Single particle behavior and effective interactions \Box ¹⁰⁷⁻¹⁰¹Sn

Test validity of shell-model predictions

□ VHE (Z ~ 89 - 102) Validate nuclear and atomic theory

Isotopes of heavy elements for which optical spectroscopy data has been obtained

http://www.gsi.de/forschung/ap/projects/laser/survey.html

DC2= -1 V

DC2= -2 V

- DC2= -5 V

DC2=-10 V

DC2=-20 V DC2=-40 V

- DC2=-50 V DC2=-60 V

t (ms)

such as **in-gas-jet laser spectroscopy** would be the technique of choice

• For **in-gas-cell** laser spectroscopy linewidths result from convoution of:

Doppler broadening, pressure broadening, power broadening, and laser

• For the successful study of atomic properties of elements with particularly

bandwidth. Typically **resolution mainly limited by pressure broadening.**

small hyperfine splitting or high sensitivity to atomic collisions, a novel approach

Introduction

• The SPIRAL2 project located at the GANIL facility (Caen, France) will deliver

a wide vaiety of energetic rare isotope beam produced in fusion evaporation

reactions to be used in nuclear physics, astrophysics and interdisciplinary research

• In laser spectroscopy experiments spectral linewidths are required to be as close

as possible to the intrinsic natural linewidths of the atomic transitions of interest

• To obtain optimum experimental conditions for the application of in-gas-jet laser spectroscopy the temporal and the geometrical overlap efficiency between the laser light and the atoms in the gas jet **must be maximized**

The IGLIS Ion Source at the LISOL facility

• Dual Chamber Gas Cell enhances Efficiency and Selectivity

Yu. Kudryavtev et al., NIM B 267 (2009) 2908

• First online In-gas-cell spectroscopy of neutron deficient Cu isotopes

T. E. Cocolios et al., PRL 103, 102501 (2009) T. E. Cocolios et al., PRC 81, 014314 (2010)

•Demonstrated proof-of-principle for atomic laser spectroscopy in the gas jet T. Sonoda et al. NIM B267 (2009) 2918

Improving Spatial Overlap

• New 90[°] bent RFQ to replace SPIG

• Implementation of a de Laval nozzle at the gas cell exit orifice

M. Reponen et al., NIM A 635 (2011) 24

Improving Temporal Overlap

• Test of a high pulse repetition rate (10 kHz) Ti:sa laser system for ionization

• Generic IGLIS setup to be commissioned and tested at the HELIOS (Heavy Element Laser Ionization Spectroscopy) laboratory @ KU Leuven

Diff.	Extraction	

and spectroscopy experiments @LISOL (Uni. Mainz, GANIL, JYFL, IPN-Orsay, RIKEN)

Reduction of Laser Bandwidth

0.02

After a test and optimization period the setup will be installed at the focal plane of S³, where full operation in on-line conditions is intended

Acknowledgments

This work was supported by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KULeuven), by the IAP Belgian Science Policy (BriX network P6/23), by the European Commission within the Seventh Framework Programme through I3-ENSAR (contract No. RII3-CT-2010-262010), and by a Grant from the European Research Council (ERC-2011-AdG-291561-HELIOS).