

Karlsruhe Institute of Technology

Institute for Photon Science and Synchrotron Radiation – IPS

A versatile linac-based THz source with high bunch charge: FLUTE

<u>M.J. Nasse¹, M. Schuh¹, S. Naknaimueang¹, M. Schwarz¹, A. Plech¹, Y.-L. Mathis¹,</u> R. Rossmanith¹, P. Wesolowski¹, E. Huttel¹, A.-S. Müller¹

¹Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), Germany

		Т	
	LU		
_		_	

The Karlsruhe Institute of Technology (KIT) is realising a new versatile linac-based THz source named FLUTE ("Ferninfrarot Linac- Und Test-

Experiment"). The presented design study is carried out in close collaboration with the Paul Scherrer Institute (PSI) in Switzerland. FLUTE has the **dual purpose** of providing high-field THz pulses for various scientific applications and to serve as a **test facility** for the study of important open questions in accelerator physics. This is of particular im-

Table 1: FLUTE key parameters				
Pulse repetition rate	10	Hz		
Spectral bandwidth	0.05-8	THz		
Electron bunch length	50-400	fs		
Electron bunch charge	0.1-3	nC		
Final electron energy	42	MeV		

portance in view of the planned ultra-broadband THz-mid infrared user facility TBONE. For FLUTE, special emphasis is put on studies of bunch compression and beam stability as a function of bunch charge and of different generation mechanisms of coherent radiation.

Laser photoinjector gun:

- CERN CTF (CLIC Test Facility) gun
- Designed for high currents

Linac:

- DESY Linac II structure
- Traveling wave linac
- $2/3\pi$ structure with 156 cells

1		-	
	1966	1	
		9	
	14		

Bunch charge	≤3	nC	
Output energy	7	MeV	
Peak power	~20	MW	
Acc. gradient	~100	MV/m	
Cells	2.5		
Frequency	2.998	GHz	

 Table 2: CTF gun parameters

PAUL SCHERRER INSTITUT

Frequency	2.998	GHz
Length	5.2	m
Acc. gradient	~10	MV/m
Peak power	~20	MW
Output energy	~42	MeV

Calculated FLUTE output after compressor: Simulation tools: ASTRA (gun \rightarrow linac), CSRtrack (compressor) CSR: Coherent Synchrotron Radiation CTR: Coherent Transition Radiation CER: Coherent Edge Radiation Superconducting insertion TBONE device test stand Bending magnets Superconducting linac E-gun & injector Bunch compressor THz/ mid-IR beam-TBONE (THz Beam Optics for New Experiments) is a lines multi-user facility for the generation of quasi CW broadband, high-power, ultra-short, and coherent THz/mid-IR radiation, as well as x-ray pulses from bremsstrahlung, Compton: fs x-rays planned at the KIT.

Final electron energy	60-100	MeV
Electron bunch charge	10-100	рС
Electron bunch length	5	fs
Spectral bandwidth	0.1-150	THz
Pulse repetition rate	10	MHz

 Table 4: TBONE key parameters

 Table 3: Linac parameters

Accelerator physics tests

FLUTE will allow systematic testing and optimisation of several machine parameters necessary to enhance the peak electric field/power and beam stability, both for FLUTE and later for the TBONE:

- Bunch length with high charge (single-cycle electric field)
- Bunch compression schemes
- Coherent synchrotron radiation (edge vs. dipole radiation)
- Coherent transition radiation
- THz transport line (impedance), etc.

Scientific Experiments

The intense THz pulses generated by FLUTE and especially in the future by TBONE are very interesting for many scientific applications, such as 2D Spectroscopy and pump-probe experiments. Here, in contrast to many conventional setups, the strong THz radiation is used as the pump pulse. These pulses couple to vibrational modes extending across large domains of a crystal lattice and allow studying interactions between molecules non-destructively, without heat-transfer.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

