Particle Accelerators

Introduction and Brief Outline of History

Carsten P. Welsch

- Useful definitions;
- Short history of accelerators limitations;
- Maxwell's equations recap;
- Waveguides a visual guide;
- Radiofrequency accelerators, incl. the Rfq;
- Rf/laser cavitity modes;
- Simple beam optics
 - Hill's equation,
 - Different multipole fields and their use;
 - Diagnostics needs

- J.D. Jackson, *Classical Electrodynamics*
- H. Wiedemann, Particle Accelerator Physics I & II
- K.G. Steffen, *High Energy Beam Optics*
- M. Livingston, J. Blewett, *Particle Accelerators*
- CERN Yellow Reports
- http://www.cern.ch/cas
- http://www.jacow.org

Where are Accelerators used ?

- High energy physics
- Medical applications (therapy, diagnostics, etc.)
- Light sources
- Nuclear, plasma, biophysics, material sciences, Archaeology, food sciences, chemistry,...

<u>Today</u>: > 20,000 (!) accelerators in operation.

Target

Charge conservation: Always in pairs! E=mc²

Electron	511 keV
Proton	938 MeV
Bottom-Quark	4.735 MeV
Top-Quark	174.000 MeV

Differences

Hadron collision

Lepton collision

Display from OPAL showing the decay of a Z into two jets of particles, originating from a quark-antiquark pair

Simulation of a lead-lead collision in the ALICE detector

Particle Energies

Definition of 1 eV:

 $E = eU = 1.602 \cdot 10^{-19} \text{J}$ $\Leftrightarrow \quad E = 1 \text{eV}$

Common units

1 keV = 10^3 eV, 1 MeV = 10^6 eV 1 GeV = 10^9 eV 1 TeV = 10^{12} eV

Maxwell equations, Theory of relativity

Other Important Units

- Mass [eV/c²]
 - $1 \text{ eV/c}^2 = 1.78 \times 10^{-36} \text{ kg}$
 - Electron mass = 0.511 MeV/c^2
 - Proton mass = 938 MeV/c^2
 - Carsten's mass $\approx 4 \times 10^{37} \text{ eV/c}^2$
- Momentum [eV/c]
 - $1 \text{ eV/c} = 5.3 \times 10^{-28} \text{ kg m/s}$
 - Momentum of football at 70 km/h
 - ≈ 10 kg m/s ≈ 2 × 10²⁸ eV/c

NIVERSITY OF

- Unit of emittance is [mm · mrad]
 - Possible to confuse with ellipse area
- Area often given in publications
 - explicitly contained in [$\pi \cdot mm \cdot mrad$]
- No standard for percentage of particles in ellipse !
- Also: Statistical definitions available

Look carefully at specific use/definition !

From here:

To here ?

How to Accelerate Particles ?!?

Force	Rel. Strength	Reach [m]	Concerned particles
Gravitation	6·10 ⁻³⁹	8	all
Electro- Magnetism	1/137	8	charged particles
Strong Force	~ 1	10 ⁻¹⁵ -10 ⁻¹⁶	Hadrons
Weak Force	10-5	<<10 ⁻¹⁶	Hadrons and Leptons

Do we really accelerate ?

Energy 1 MeV => 1 GeV

β=v/c	0.95	0.99	0.999	0.999 999 9
γ =m/m ₀	3	7	22	2000

Velocity hardly changes. Rather: *"Mass increaser"*

Illustration of an Accelerator

The Cockcroft Institute

Accelerator History

< 100 keV</pre>

- 1895 Lenard: e⁻ scattering in gases
- 1913 Frank/Hertz: e⁻ excitation through e⁻ bombardment
- Some MeV (α particles)
 - 1906 Rutherford targets thin foils
 - 1919 Rutherford induces nuclear reactions (N)

"How it all started..."

1927: Lord Rutherford demands a "copious supply" of projectiles with higher energies, as natural α and β -particles can provide.

At the opening of the *High Tension Laboratory* he demands:

What we require is an apparatus to give us a potential of the order of 10 million volts which can be safely accommodated in a reasonably sized room and operated by a few kilowatts of power. We require too an exhausted tube capable of withstanding this voltage. (...) I see no reason why such a requirement cannot be made practical.

Standard: Acceleration towards ground potential.

Unsuccessful Attempts

1928: Curt Urban, Arno Brasch and Fritz Lange reached 15 MV by harnessing lightning in the Italian Alps.

The two who survived the experiment then designed a drift tube able to withstand such voltages.

Birth of Particle Physics

- 1919 Rutherford splits Nitrogen
- 1927 Rutherford demands particle accelerators Studies were started
- 1929 Cockcroft and Walton start high voltage exeriments
- 1932 Nobel prize: Cockcroft and Walton split Litium !!!!

Cockcroft-Walton Generator

ISIS 665 kV

Greinacher 1921

Alternative Solution

1930: Van de Graaff builds first 1.5 MV accelerator

OMIT Museum All rights reserved

 \Rightarrow Up to 17.5 MV with insulation gas (1MPa SF₆)

Higher Energies: Tandem VdG

UNIVERSITY OF LIVERPOOL

Van de Graaf 20+ MV

Last of its kind.

REALLY high voltages !

Target Energy: Some 10 GeV

- <u>Problem</u>: Not reachable with static fields.
- Solution:
 - Go for rf accelerators,
 - Re-use accelerating voltage.

Alvarez Linac: Working Principle

Photo: Old Linac1 at CERN.

- Acceleration between cavities
- Cavity length increases to match speed

z

DC vs. RF Accelerators

DC accelerator

Rf accelerator

Maxwell Equations (in vacuum)

$$\nabla \times \vec{B} - \frac{1}{c^2} \frac{\partial}{\partial t} \vec{E} = \mathcal{Q}_0 \vec{J} \quad \nabla \cdot \nabla \vec{B} \vec{B} \oplus 0$$
$$\nabla \times \vec{E} + \frac{\partial}{\partial t} \vec{B} = 0 \qquad \nabla \cdot \vec{E} = \mathcal{Q}_0 c^2 \rho$$

Why not DC?

1) DC
$$(\frac{\partial}{\partial t} \equiv 0)$$
: $\nabla \times \vec{E} = 0$ is solved by $\vec{E} = -\nabla \Phi$
Limit: To reach 1 MeV, one needs 1 MV !

2) Circular accelerators: DC impossible, since
$$\oint \vec{E} \cdot d\vec{s} = 0$$

Time-varying fields:

$$\nabla \times \vec{E} = -\frac{\partial}{\partial t}\vec{B} \qquad \oint \vec{E} \cdot d\vec{s} = -\iint \frac{\partial B}{\partial t} \cdot d\vec{A}$$

- Gustaf Ising
 Proposed rf concept
 - * 1881
 - † 1960
- Rolf Wideröe
 - * 11.7.1902, Oslo,
 Norway.
 - † 1996.
- Ernest Orlanda Lawrence
 - * 8.8.1901, South-Dacota, USA
 - † 27.8.1958

U N I V E R S I T Y O F

'ERP(

TE: Electric field perpendicular to direction of propagation.

TMnml

n: azimuthalm: radiall: longitudinalcomponent.

TM:Magnetic field perpendicular to direction of propagation.
 n: azimuthal

m: radial

I: longitudinal

component.

 \vec{E}

colour coding

8.0000e-01 7.0000e-01 6.0000e-01 5.0000e-01 4.0000e-01

2 Superimposed Plane Waves

Courtesy of Erk Jensen, CERN

Fundamental (TE $_{10}$ or H $_{10}$) mode in a standard rectangular waveguide. E.g. forward wave

power flow:
$$\frac{1}{2} \operatorname{Re} \left\{ \iint_{\operatorname{cross}} \vec{E} \times \vec{H}^* \cdot d\vec{A} \right\}$$

Prof. C.P. Welsch – LA³NET School @ GANIL, France 2012

QUASAR

Electric field

Standing wave – resonator

Two counter-running waves of identical amplitude.

electric field

NO net power flow:

magnetic field (90° out of phase)

Round waveguide

parameters used in calculation: $f = 1.43, 1.09, 1.13 f_c$, a: radius

Pillbox cavity

Electric field

TM₀₁₀-mode

(only 1/8 shown)

Magnetic field

Drift Tube Linac (DTL) – how it works

For slow particles the drift tube lengths can be easily adapted.

Analogy: RF/optical resonator

a resonator has resonance frequencies ! What is a Laser ?

Resonator + Gain Medium

Problem: Missing Link

Here: Multiple use of same rf field.

NIVERSITY

- 1970 Kapchinskij and Teplyakov propose the Rfq idea
- 1974 experimental test at USSR Institute for High Energy Physics in Protvino. A 148.5 MHz RFQ accelerated 100-KeV protons to 620 KeV with an efficiency of 50%.
- 1977 RFQ concept is published in the western world. Strong interest in Los Alamos National Laboratory (USA). Decision to test the RFQ principle. Developments of computer codes for RFQ design.
- 1979 Start of P.O.P. (Proof-of-principle) experiment at Los Alamos . 425 MHz RFQ accelerates a 100-keV proton beam to 640 keV with an efficiency of 90%, as predicted by the codes.
- Nowadays hundreds of RFQ accelerator are operating in the world.

- Focus
- Bunch a dc ion beam with high efficiency.
- Accelerate

!!! Preserve the emittance !!!

Both the focusing as well as the bunching and acceleration are performed by the RF field.

Empty cavity; mode TE 11

Dipole Mode

Empty cavity; mode TE21

Quadrupole Mode: Rfq.

Cavity with vanes

Empty cavity; mode TE₂₁

TE_{210} mode.

NIVERSITY

Linac 2: Phase Focusing

Why do particles stay within bunch ?

- E. M. McMillan V. Veksler (1945)
- Field is synchronized so that slower particles get more acceleration
- Energy/time focus in laser acceleration ?

Prof. C.P. Welsch – LA³NET School @ GANIL, France 2012

QUASAR

Radial matching to adapt the beam to a time-varying focusing system					
		aperture smoothly brought to the average value			
Shaping to give the beam a longitudinal structure					
Taper phase to -80°,-60°	Start modulation	aperture such that focusing is constant			
Bunching to bunch and begin acceleration					
Taper phase to –30°,-20°	Max. modulation	aperture such that focusing is constant			
Acceleration to bring the beam to the final energy					
Constant Phase	Constant modulation	Constant aperture			
Output matching to adapt the beam to the downstream user's need.					

Ion Optics: Basics

- Standard: Some 10⁹ particles/bunch
- Always: ∆E (SR, rest gas, fringe fields, etc.)

How to guide particles ? $\vec{F} = e \cdot \left(\vec{E} + \vec{v} \times \vec{B}\right)$

Examples: B = 1T $\sqrt{E} = 10^8 \text{ V/m}$

$$\frac{1}{R(x,z,s)} = \frac{e}{p} B_z(x,z,s)$$

Develop B into Taylor series

$$\frac{e}{p}B_{z}(x) = \frac{e}{p}B_{z0} + \frac{e}{p}\frac{dB_{z}}{dx}x + \frac{1}{2!}\frac{e}{p}\frac{d^{2}B_{z}}{dx^{2}}x^{2} + \frac{1}{3!}\frac{e}{p}\frac{d^{3}B_{z}}{dx^{3}}x^{3}\dots$$
$$= \frac{1}{R} + kx + \frac{1}{2!}mx^{2} + \frac{1}{3!}ox^{3}\dots$$

Magnet Definitions

2n-pole:

NIVERSITY OF

- Normal: gap appears at the horizontal plane
- Skew: rotate around beam axis by $\pi/2n$ angle
- Symmetry: rotating around beam axis by π/n angle, the field is reversed (polarity flipped)
 D. Robin, MSU

Dipole Magnets

Used for beam bending

Something to remember:

$$\frac{1}{\rho} [m^{-1}] = 0.2998 \frac{B_0[T]}{p[GeV/c]}$$

Field Calculation

$$\oint \overrightarrow{H} \, \overrightarrow{ds} = hH_0 + lH_E$$
$$H_E = \frac{1}{\mu_r} H_0$$

if $\mu_r >> 1$, then

$$B_0 = \frac{\mu_0 nI}{h}$$

with h = gap height

Focusing: Quadrupoles

NIVERSITY

- Quadrupole produces a constant gradient g=-dB_z/dx.
 - Focusing forces increase linear with displacement
 - Important: no coupling

- Optical lenses are either focusing or defocusing.
- Magnetic lenses focus in one plane but are defocusing in the orthogonal plane (from Maxwell's equations)

Quadrupole Magnets

Field rises linear with distance

$$B_x(y) = -g \cdot y$$

$$B_y(x) = -g \cdot x$$

If *R* is distance (centre - pole) and current *I* flows through *n* coil turns

$$g = \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = \frac{2\mu_0 nI}{R^2}$$

Following dipole logic:

$$k[m^{-2}] = 0.2998 \frac{g[T/m]}{p[GeV/c]}$$

Transverse Particle Motion

Vertical displacement y in quad of length ds and strength k:

 $dy' = -y \cdot k \cdot ds$

Leads to Hill's equation:

 $y''(s) \pm k(s)y(s) = 0$

Generalized expression:

$$K(s) = \begin{cases} -k(s) + \frac{1}{\rho^2(s)} \\ k(s) \end{cases}$$

horizontal

vertical

Solution of Hill's Equation

Harmonic oscillator with variable spring constant.
 Generalized coordinate u(s) = x or y.

$$u(s) = a_{\sqrt{\beta(s)}} \cdot e^{\pm i(\varphi(s) + \varphi_0)}$$

where
$$\Phi'(s) = \frac{1}{\beta(s)}$$
 and $\alpha = const$.

Phase advance per period / is

$$\mu = \mu(s,l) = \int_{s}^{s+l} \frac{1}{\beta(t)} dt$$

Only single particles !

Normally not of major interest.

- Coordinate transformation
- Make use of periodicity
- Normalized representation
 - $X(s) = x(s) / \beta(s)$

• Appr. Gaussian shape. Def.: $\sigma(s) = \sqrt{\varepsilon \cdot \beta(s)}$

Therefore:

NIVERSITY OF

 $\varepsilon = \frac{\sigma^2(s)}{\beta(s)}$

Max. possible emittance (mech. aperture) defines the acceptance.

Until now ideal motion with $\Delta p/p=0$

Introduce dispersion:

Most of the time dispersion orbit is defined as

$$\Delta p / p = 1$$

Machine Design: Orbit and D(s)

Diagnostics needs to measure/control this !

The Cockcroft Institute

Use individual matrices

$$(M_B)(M_{QF})(M_{QD})(M_D)(M_D)(M_B)(M_D)\cdots$$

Drift

Complex Structures

 $M_{Drift} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$

Thin Quadrupole where 1/f=kl

$$M_{Q,short} = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -kL & 1 \end{pmatrix}$$
$$\begin{pmatrix} \cos(L/k) & \frac{1}{k} \sin(L/k) \end{pmatrix}$$

MLarge Quadrupole

$$QF = \begin{pmatrix} \cos(L_{\sqrt{|k|}}) & -\sqrt{|k|} \sin(L_{\sqrt{|k|}}) \\ -\sqrt{|k|} \sin(L_{\sqrt{|k|}}) & \cos(L_{\sqrt{|k|}}) \\ \cos(L_{\sqrt{|k|}}) & \frac{1}{\sqrt{|k|}} \sinh(L_{\sqrt{|k|}}) \\ -\sqrt{|k|} \sinh(L_{\sqrt{|k|}}) & \cosh(L_{\sqrt{|k|}}) \\ \cos(L_{\sqrt{|k|}}) & \cos(L_{\sqrt{|k|}}) \\ -\sqrt{|k|} \sinh(L_{\sqrt{|k|}}) & \cosh(L_{\sqrt{|k|}}) \\ \end{bmatrix}$$

Prof. C.P. Welsch – LA³NET School @ GANIL, France 2012

M

• Combine the matrices for each plane

$$\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} C_x(s) & S_x(s) \\ C'_x(s) & S'_x(s) \end{pmatrix} \begin{pmatrix} x_0(s) \\ x'_0(s) \end{pmatrix}$$
$$\begin{pmatrix} y(s) \\ y'(s) \end{pmatrix} = \begin{pmatrix} C_y(s) & S_y(s) \\ C'_y(s) & S'_y(s) \end{pmatrix} \begin{pmatrix} y_0(s) \\ y'_0(s) \end{pmatrix}$$

...to get a total 4x4 matrix

$$\begin{pmatrix} x(s) \\ x'(s) \\ y(s) \\ y'(s) \end{pmatrix} = \begin{pmatrix} C_x(s) & S_x(s) & 0 & 0 \\ C'_x(s) & S'_x(s) & 0 & 0 \\ 0 & 0 & C_y(s) & S_y(s) \\ 0 & 0 & C'_y(s) & S'_y(s) \end{pmatrix} \begin{pmatrix} x_0(s) \\ x'_0(s) \\ y_0(s) \\ y'_0(s) \end{pmatrix}$$

- (very brief) overview of accelerator history;
- Linacs at the heart of most facilities important: Rfq;
- From Maxwell's equations to cavity modes;
- Similarities between rf cavities and laser resonators.
- (simplified) beam optics and application to accelerator layout;

All of these will turn up many times during this week !

Thanks for your attention.

