Laser Ion Sources I and II – Structure of the lectures

Bruce Marsh CERN EN-STI-LP

1) Motivaton

RESONANCE IONIZATION LASER ION SOURCES – 2 Lectures

The chart of stable nuclei

+ the discovery of radioactivity

Slide: M. Huyse

Curie I, Joliot F. Artificial production of a new kind of radioactive element. Nature 1934;133:201–2. ${}^{4}\text{He}+{}^{10}\text{B} => {}^{13}\text{N}+\text{n}$

+ the advent of nuclear reactors

+ Early Isotope Separator On Line (ISOL) isotopes

+ sensitive detection methods

+ energy increases and driver beam upgrades

+ thin target and projectile fragmentation – shorter lifetimes

= The modern nuclear chart

nuclei have been observed

The ISOL process

Fast, Efficient, Universal and Selective!

Production

Extraction

ISOL ion source and beam requirements are very broad !

- Energy range 10⁻⁶ eV (10 mK) to >MeV/u
- Intensity 0.01 10¹⁰ ions/s
- Selectivity, efficiency, universality!
- Particle type : ⁶He to ²³²R (Z: 2-88, N:4-144), and molecules!
- Lifetimes: stable \rightarrow micro seconds
- Charge state: mainly 1+ or 1-, or n+ for post acceleration

Clearly, not all of these requirements are fulfilled by a single ion source, we need to have many options and choose the optimal one depending on the requested case and priorities for the beam characteristics.

R. Kirchner: Nucl. Instr. Meth. 186, 275 (1981)

Production of Exotic Nuclei: Beam purity requires element selectivity

Fighting against unwanted isobar production and ionization to obtain ⁷⁸Ni

Ni+:Ga+ ratio with surface ionization only:

IP (Ga) = 5.99 eV IP (Ni) = 7.63 eV $\alpha = \frac{n_i}{n_0} = \frac{\omega_i}{\omega_0} \exp\left(\frac{\Phi - W_i}{kT}\right)$ Gat:Nit > 10⁶

Need to selectively increase Ni ionization efficiency

And/or suppress isobar (Cu, Zn, Ga) ionization efficiency.

The Resonance Ionization Laser Ion Source

RESONANCE IONIZATION LASER ION SOURCES – 2 Lectures

Energy scales and units that will be used

Wavelength, λ : SI unit = m [or μ m, nm or Angström, 1 Å = 10⁻¹⁰ m]

 λ is dependent on the (refractive index of the) medium in which the wave travels

Frequency, v: SI unit = Hz (i.e., cycles s⁻¹) [or MHz = 10^{6} Hz , GHz = 10^{9} Hz] frequency is *independent* of the medium

Energy, E: SI unit = J,

- BUT : It is hard to measure energy directly. Spectra are recorded as line intensities as a function of frequency or wavelength.
- The conversion to energy *appears* simple: $\mathbf{E} = \mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{c}/\lambda$
- But h is only known to 8 significant figures. Hence, it is convenient to introduce

Wavenumber, a *property* defined as reciprocal of the vacuum wavelength: and whose units are universally quoted as **cm⁻¹** (*n.b.* not m⁻¹)

 $\overline{\nu} = \frac{1}{\lambda_{vac}}$

Wavenumber is directly proportional to energy, $E = hc\overline{v}$ and thus we commonly quote "energies" in units of cm⁻¹.

How to describe photons

It will usually be convenient to consider light as a stream of zero rest mass particles or packages of radiation called photons with the following properties:

• Energy, E = hv

in which *h* is Planck's constant, $h = 6.626 \times 10^{-34}$ Js

• Linear momentum, $p = E/c = hv/c = h/\lambda$ (de Broglie)

Max Planck (1855-1947)

• *(spin) Angular* momentum equivalent to a quantum number of 1:

$$j_{ph} = 1$$
 i.e., $\left| \underline{j}_{ph} \right| = \sqrt{2}\hbar$

- n.b., 1) photons are Bosons (i.e., obey Bose-Einstein statistics)
 - 2) photons have *helicity* (projection of angular momentum on the direction of travel) of ±1 only (*i.e.*, not 0)

A Prelude to Atomic Spectroscopy

17th Century: Newton demonstrates that the Sun's white light can be dispersed into a "spectrum" of colours

19th Century (1814) J. Fraunhofer measures dark lines in the Sun's spectrum.

1859: Kirchhoff & Bunsen explain the darklines in the solar spectrum in terms ofabsorption by elements in the Sun's surface.1885: J. Balmer describes the series of linesatomic hydrogen.

This discrete structure required quantum mechanics and Neils Bohr (1913)

The atomic line spectra is an element's fingerprint

- Electron transitions between *energy levels* result in emission or absorption lines.
- The spectral position of these lines are determined by the structure of the atom.
- Every chemical element therefore has its own unique spectral *fingerprint*.
- **Example:** In astronomy the chemical composition of an astronomical object is determined by observing its *absorption* or *emission spectrum*.
- The spectral lines are not absolutely monochromatic! They are actually an intensity distribution around a specific central wavelength. The width of this intensity distribution is the 'line-width' of the transition.
- This line-width depends various factors that will be discussed.

410.1 434.0 486.1 656.3 nm nm nm nm nm

© 2005 Pearson Education, Inc., publishing as Addison Wesley

The atomic line spectra is an element's fingerprint

Higher Resolution

By increasing the resolution by a factor of
 ~5000 a fine structure splitting of the hydrogen is
 observed: key evidence for the spin of the electron.

•A further factor of 1000 zoom into the structure reveals finer splitting due to the coupling of the nucleus with the electronic orbital: the hyperfine structure.

•The splitting of the hyperfine structure results from the presence of a permanent magnetic field associated ${}^{2}S_{1/2}$ F_{i} F_{i} (with the nucleus and/or a non-symmetric electric field associated with a deformed nuclear charge distribution.

$P_{3/2}$ $P_{3/2}$ $P_{1/2}$ P_{1

F=J+I

Note – Relevant for part 5 of this course:

If we can measure the splitting of the atomic transitions with sufficient resolution it is possible to deduce the nuclear observables (magnetic and electric moments, spin and size) without any model (nuclear) dependence.

Atomic Energy Scales

Energy scale	Energy (eV)	Effects	
Gross structure	1-10	electron-nuclear attraction	
		Electron kinetic energy	
		Electron-electron repulsion	
Fine structure	0.001 - 0.01	Spin-orbit interaction	
		Relativistic corrections	
Hyperfine structure	10-6 - 10-5	Nuclear interactions	

How can a photon affect the electron configuration?

- The emission or absorption of a photon is the principal means by which an electron in an atom can increase or decrease its energy
- An atom with all its electrons in the lowest energy configuration is said to be in the ground state.
- Any other electron configuration is an excited state of the atom.
- What factors determine the energy of the excited state in an atom?

- Nuclear charge (coulomb): potential energy: inversely proportional to distance from nucleus
 - \rightarrow Principal quantum number, n (1, 2, 3....)
- Electron-electron interactions \rightarrow (spin alignment s=±1/2; multiplicity: 2S+1)
- Electron orbital angular momentum \rightarrow L (labelled, S, P, D, F for 0,1,2,3)
- Spin-orbit interaction: electron spin/induced magnetic field interaction
 - \rightarrow Total (orbital + spin) angular momentum quantum number, J = L+S
- How can an electron move between states?
 - Increasing or decreasing the energy of a given electron requires the absorption or the emission of a photon
 - Energy can only be increased or decreased in discrete amounts which match the energy differences between one electron state (*state = combination of the factors listed above*) and the next.
 - Not all transitions between electron states are possible through the emission of a single photon, some transitions are more likely than others and some are forbidden altogether (conservation of momentum)

1s 2p

Selection rules for atomic transitions

It is not enough to ensure only energy conservation:

- Conservation of angular momentum
- Obey symmetry rules.

An United Workshift Works Workgang Demittöder Atoms, Molecules and Photons An Introduction to Atomic-, Molecular- and Quantum Physics

The origins of the selection rules are described in most atomic physics textbooks

Singlet Triplet	Selection rule	Remark
$\frac{1}{1} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	$\Delta l = \pm 1$ for one-electron systems	Strictly valid
Choosing a strong transition from literature: $\sum ^2 \Delta$	$\Delta L = \pm 1$ for multi electron systems with <i>L</i> - <i>S</i> -coupling	Gerade levels are solely combined with ungerade levels
$S \mu I \Lambda_{ik}$	$\Delta M = 0, \pm 1$	$\Delta M = 0$: linear
 A good guide is the quoted A_{ik}-value For saturated transitions, consider the statistical weights: 		$\Delta M = \pm 1$: σ^+ or σ^- circularly polarized light
number of magnetic substates, m _J : (2J + 1)	$\Delta S = 0$	Valid for light atoms. Exceptions for heavy
ΔJ=0 ΔS≠1		atoms with large spin- orbit coupling (weak Intercombination lines)
<u>1s²</u> Forbidden Allowed	$\Delta J = 0, \pm 1$	$J = 0 \rightarrow J = 0$ is forbidden

Laser ion source – using this fingerprint for selective ionization

Rare isotope production methods compatible with laser ion sources

3) History of the laser ion source

RESONANCE IONIZATION LASER ION SOURCES – 2 Lectures

Early proposals: 1984

PROPOSAL of the Institute of Spectroscopy, Acad.Sci. USSR for experiments with ISOLDE-CERN Facility (V. S. Letokhov and V. I. Mishin) LASER PHOTOIONIZATION PULSED SOURCE OF

RADIOACTIVE ATOMS

<u>I. Purpose</u> The development of a pulsed isobar-selective effective source of ions at the mass-separator inlet on the basis of the method of laser resonant atomic photoionization.

Early proposals: 1988

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/ISOLDE IP 50

PROPOSAL TO THE ISOLDE COMMITTEE

DEVELOPMENT OF A LASER ION SOURCE

F. Ames, E. Arnold, H.J. Kluge, Y.A. Kudryavtsev,
V.S. Letokhov, V.I. Mishin, E.W. Otten, H. Ravn,
W. Ruster, S. Sundell and K. Wendt

University of Mainz, F.R.G., Institute of Spectroscopy, Troitzk, USSR and the ISOLDE Collaboration, CERN, Switzerland

> Spokesman: K. Wendt Contactman: E. Arnold

SUMMARY

Test experiments at Troitzk and Mainz have demonstrated the feasibility of step-wise multi-photon excitation and final ionisation by pulsed lasers as a selective and efficient tool for the production of isobarically pure ion beams. The development of a new type of ion source based on this concept is proposed. In combination with existing targets, this will open up the way to a further extension in respect to purity and availability for a number of elements at on-line mass separator facilities. The collaboration proposes to use the CERN-ISOLDE off-line separator for tests of appropriate target ion source configurations with respect to efficiency and purity. After succesful development the laser ion source shall be installed as an additional facility at the IS-3 separator.

Ionization in a hot metal cavity

Nuclear Instruments and Methods in Physics Research A306 (1991) 400-402

Application of a high efficiency selective laser ion source at the IRIS facility

G.D. Alkhazov, L.Kh. Batist, A.A. Bykov, V.D. Vitman, V.S. Letokhov¹, V.I. Mishin¹, V.N. Panteleyev, S.K. Sekatsky¹ and V.N. Fedoseyev¹ Leningrad Nuclear Physics Institute, Academy of Sciences of the USSR, Gatchina, Leningrad district 188350, USSR

Received 6 December 1990 and in revised form 25 March 1991

Nuclear Instruments and Methods in Physics Research B73 (1993) 550-560

Chemically selective laser ion-source for the CERN-ISOLDE on-line mass separator facility

V.I. Mishin¹, V.N. Fedoseyev¹, H.-J. Kluge², V.S. Letokhov¹, H.L. Ravn³, F. Scheerer², Y. Shirakabe⁴, S. Sundell³, O. Tengblad³ and the ISOLDE Collaboration *PPE Division, CERN, Geneva, Switzerland*

Received 26 November 1992

Yb, Tm, Sn, Li - off-line Yb – on-line

Demonstrated:

Yb, Nd, Ho - off-line Ho - on-line

RILIS at ISOLDE-PSB

CVL lasers: v_{rep} =11.000 Hz Oscillator + 2 amplifiers 2-3 dye lasers with amplifiers, nonlinear crystals BBO:

$$P_{Cu}^{total} \le 75 W$$

$$P_{dye} \le 8 W$$

$$P_{2\omega} \le 2W \qquad P_{3\omega} \le 0.2 W$$

Resonance Ionization Laser Ion Sources Worldwide

Slide: S. Rothe

Building a laser Ion source at an ISOL facility such as ISOLDE

What is the optimal laser ion source configuration for ISOLDE?

Requested features:

- Universal
- Selective
- Efficient
- Reliable
- Fast

The ISOLDE Laboratory

What are we trying to achieve:

Fast, Efficient, Universal and Selective!

What are the considerations based on what we already know about the laser ionization principle and the ISOLDE target/ion source unit:

The Hot Cavity Laser Ion Source

Features of the hot cavity that influence the application of RILIS:

- Effusion time
 - High temperature
- Electron emission

- \rightarrow Laser repetition rate
- → Laser linewidth atomic transitions
- \rightarrow Extraction efficiency
- Surface ionization \rightarrow Selectivity

Chemistry dependant : wall sticking is greater for less volatile elements but typical effusion times through the hot cavity is $100-200 \ \mu s$

Thermal population of low lying excited atomic states

Surface ionization

Doppler broadening

Broadening mechanisms: Natural Linewidth

 $|A(\omega)|^2$

ω

0,5

Determined by the *spontaneous emission* lifetime of the state

Uncertainty principle:

EXAMPLE Na D-line $3P1/2 \rightarrow 3S1/2$ transition with a sponteneous emission lifetime of 16 ns *Natural linewidth*, $d_n = \frac{10^{-9}}{16 \times 2\rho} \times 10 MHz$

Doppler broadening

EXAMPLE

Na (m = 23g/mol) D-line $3P1/2 \rightarrow 3S1/2$ transition with a sponteneous emission lifetime of 16 ns; λ = 589.1 nm; T = 500 K; $δv_n = 10 \text{ MHz}$

$$dn_D = 7.16 \times 10^{-7} \times (c/(539.1 \times 10^{-9}) \times \sqrt{500/23} = 1.7 \,GHz$$

The Doppler broadening is often comparable to or greater than HFS or IS effects!

Pressure or collisional broadening: Hot cavity vs Gas cell

How does the degree of saturation influence the efficiency or required precision of laser tuning ?

So we now understand that for efficient laser ionization we need pulsed, tunable lasers, preferably with AI or Rydberg ionization, and that each transition should be ``saturated''. *The duty cycle is also something to bear in mind*.

However, for a laser ion source the ionization efficiency is not the only important requirement, what about the optical selectivity? This is defined as the ratio of the probability of exciting the selected isotope to the probability of exciting other isotopes or elements.

Excitation probability of an atom in a laser beam whose frequency is tuned near resonance:

When the laser is in resonance with a selected isotope and $\Delta >> \Gamma$,

 $S \sim 4 \times \frac{\Delta^2}{\Gamma^2}$

(Δ is the atomic resonance difference between isotope of interest and a ``contaminating'' isotope/element).

eg. Mg isotopes, $\Gamma \sim 6$ MHz, $\Delta \sim 100$ MHz (neighbouring isotopes): $S \sim 1000$ $\Delta \sim 10^{15}$ Hz (Mg to Ca): $S \sim 10^{17}$!!! and multi-step excitation: $S = S_1 \cdot S_2 \dots \cdot S_n$. But in reality S is less due to broadening \bigotimes Summary of laser parameters that are required:

- Difficult to saturate transitions, especially ionization step

 pulsed lasers with high energy per pulse (mJ).
- Broadening in hot cavity
 - laser linewidth to match broadening for resonant transitions (1-10 GHz)
- Finite residence time of atoms (~100 us)
 - High repetition rate (> 10kHz)
- Large range of elements required
 - broad wavelength tuning range
- Multi step ionization
 - > 2 tunable lasers required
- Heavy reliance on laser ion source and large demand
 - Reliability and flexibility, ease of use for quick element switching
- Long distance of transmission of beams and inaccessible areas – good beam quality, broadband optics, reference points, monitoring

What laser types meet these requirements

Ti:Sapphire laser

- Optically active component is Ti³⁺ <1% by weight
- Host solid is sapphire (Al₂O₃)
- Ti interacts with solid so the E₂, E₁ broadened significantly.
 The atoms in the solid vibrate and interact with the Ti atoms.
- Gain bandwidth huge (100 THz): this enables either:
 - tunable laser (if you add frequency selective elements)
 - ultra short pulse laser (uncertainty principle)

Dye laser

Diffraction grating as a laser cavity mirror:

Reflection maxima on axis with cavity is wavelength dependent \rightarrow wavelength selective oscillation

Comparing dye and Ti:Sa lasers

	Dye	Ti:Sa
Gain Medium:	> 10 different dyes	=1 Ti:sapphire crystal 🙂
	liquid (org. solvents)	solid-state
Tuning range	540 – 850 nm	680 – 980 nm
Power	< 12 W	< 5 W
Pulse duration	~8 ns	~50 ns
Synchronization	optical delay lines	q-switch, pump power 🙂
# of schemes developed	47 🙂	37
Maintenance	renew dye solutions	~ none 🛛 🙂
20.0 10.0 5.0 2.0 2.0 1.0 0.5 0.5 0.5 0.2 3x Ti:Sa 2x Dye 2x Ti:Sa	35 30 25 (%) 20 15 10 10 10	

5

0

Dye

550 600 650 700 750 800 850 900 950 200 300 400 500 600 700 800 900 λ (nm) Harmonic generation in birefringent crystals:

0.1

3x Dye

4x Ti:Sa

19913

Due to nonlinear response of materials to high EM field of focused lasers

Multiple harmo

Most first excited steps req

Harmonic gene

Photonics

Linear and Nonlinear Interactions of Laser Light and Matter

Ralf Menzel

uning range

ssible with 532 nm pumping

Parameter related to fundamental beam focusing

rystal length nental power in crystal

near coefficient

h(L)

Optical axis

Laser beam

ials have different I angular acceptances

2nd Edition

Multiple harmonic generation – Practicalities for a RILIS use.

Many non-linear materials exist with greatly varying physical and optical properties.

For short wavelengths (<240nm) try to avoid small spot sizes on optics : Negative lens

Sirah Dye laser – an example of a modern commercial dye laser

199192

"Upgrade of the RILIS at ISOLDE: New lasers and new ion beams"

V. Fedosseev et al: Rev. Sci. Instrum. 83, 02A903 (2012)

The RILIS Ti:Sa lasers

S Rothe et al: Journal of Physics: Conference Series 312 (2011) 052020

Pump laser: Nd:YAG (532 nm), Photonics Repetition rate: 10 kHz Pulse length: 180 ns Power: 60 W

Ti:Sa lasers: Line width: 5 GHz Pulse length: 30-50 ns

Wavelength tuning range (6 mirror sets):

- Fundamental (ω) 690 940 nm (5 W)
- 2nd harmonic (2ω) 345 470 nm (1 W)
- 3rd harmonic (3ω)
 230 310 nm (120 mW)
- 4th harmonic (4ω) **205 235** nm (120 mW)

Dual RILIS Concept

Practical issues for beam transport

eferènce

- Up to 4 laser beams to transport to the target (through bending magnet of mass separator)
- 2 different targets located ~20m away through considerable concrete shielding
- Air flow / temperature changes
- No access to mass separator or target area
- Small laser interaction region (3mm) tube diameter
- Timing issues optical delay lines

INACCESSIBLE ZONE Broadband optics Quartz plate Quartz window RILIS TABLE

Upgraded HRS launch system for ISOLDE RILIS (PhD thesis of S. Rothe)

The actual ISOLDE RILIS setup

- 6 tunable lasers + 50 W @ 532 nm for ionization step, 10 kHz rep rate
- Nd: YAG pumping dye or Ti:Sa lasers, with possibility of doubling to quadrupling
- Atomic physics: Used to determine ionization schemes and I.P of chemical elements with no stable isotopes (e.g. polonium, astatine)
- Nuclear physics: laser spectroscopy -> electromagnetic ground state properties

Arranging the Ti:Sas alongside the dye lasers

Finding space for pump laser + 3 Ti:Sa + FCUs

Frequency conversion unit

Available elements so far

Recent RILIS operation

Ion beams of 16 elements were produced during 2011 :

- 2573 h for on-line experiments
- Ti:Sa system used already with 9 elements
- Some additional tests only feasible because of the 'spare' laser system
- Significant Ti:Sa use despite 1st year of operation and still in 'implementation/testing phase'

Modes of RILIS operation: Dual RILIS

Condition for dual operation: **Temporal synchronization** of the two laser systems

- Increased efficiency due to higher laser power or optimal scheme
- Improved reliability due to redundancy / backup
- More elements are accessible due to greater tuning range/scheme database

RILIS status monitoring

Essential RILIS parameters are published to a Labview DSM. All values are accessible from the CERN technical network RILIS monitor display is published to a website for remote monitoring

Beam monitoring and stabilization

Stabilization of high and low frequency beam fluctuations, essential for ON-CALL RILIS

http://www.tem-messtechnik.de/MainPages/en/productsfs.htm

LXNET* Prize winner: S Rothe PhD Thesis and Publication to Nature Comms.

Ionization scheme development

What are our options for ionization schemes?

Auto-ionizing states – simplified concept

Decay from the AIS is either by photon emission or by electron-electron energy transfer via the coulomb interaction: more likely if the 2 electrons share similar shaped orbits (temporal overlap) and if the energy transfer does not have to be to a discrete state - *continuum*

Extra loss channel \rightarrow reduced lifetime of state \rightarrow broader resonance

How to develop an ionization scheme

• Literature Search

On-line atomic spectral line databases, published spectroscopy work.

 R.L. Kurucz' CD-ROM 23 Atomic Line Database : http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html

 NIST atomic spectral line database :
 http://www.nist.gov/pml/data/asd.cfm

- In-source resonance ionization spectroscopy Laser frequency scans across regions of interest whilst observing the ion current as the sample is evaporated in the target or oven.
- Saturation measurements

Determine whether or not efficiency gains can be achieved from an increase of power. (e.g by optimizing the distribution of the CVL pump power).

• Efficiency measurement

Total evaporation of the sample (of known mass) and integration of the ion current.

1 week for a simple case 2 weeks for AIS search

Case Example: Finding a new Au Ionization scheme for ISOLDE RILIS using the CVL pumped Dye laser

Laser setup for testing 2nd steps

Laser setup for AIS search

- Include a 3rd dye laser

Compare good schemes and study the optimal scheme: Saturation curves, efficiency measurements etc.

Change of laser system \rightarrow A new RILIS scheme for manganese

- Replacement of current scheme which uses the CVL green beam.

Calcium scheme development

Daniel Fink: PhD work

How do nuclear properites influence the selectivity of the laser ion source?

ISOTOPE SHIFT

The frequency difference in the electron transition between 2 isotopes of an element

CAUSED BY these nuclear properties:

Finite nuclear mass	MASS SHIFT
Nuclear Volume (not point-like)	FIELD SHIFT

Finite nuclear mass MASS SHIFT

Nuclear Volume FIELD SHIFT

Heavy Nuclei $\Delta v / v \approx 10^{-5}$

Light Nuclei: $\Delta v / v \approx 10^{-8}$

Isotope shifts in practise

3s-3p

5s-5p

Atomic number, Z_{6}

HYPERFINE STRUCTURE

- Magnetic dipole interaction
- Electric quadrupole interaction

Splitting of atomic spectral lines into multiplets with separation 10⁻⁶ of total transition energy.

Interaction	1/λ (cm ⁻¹)	eV	v (Hz)
Central coulomb	30000	4	10 ¹⁵
Fine structure	1-1000	10-4-10-1	$3 \cdot 10^{10} - 3 \cdot 10^{13}$
Hyperfine structure	10-3-1	10-7-10-4	$3.10^{7} - 3.10^{10}$

Hyperfine structure arises from interaction of nuclear moments with electric and magnetic fields produced at nucleus by orbiting electrons.

$$\vec{F} = \vec{I} + \vec{J}$$

$$F = I + J, I + J - 1, \dots, |I - J|$$

Summarizing the effects:

These energy shifts of may be only a few parts per million of the energy of an optical atomic transition. Optical techniques provide the sensitivity and precision required to measure these effects.

Various techniques for different parts of the nuclear chart

Progress in laser spectroscopy at radioactive ion beam facilities B Cheal and K T Flanagan 2010 J. Phys. G: Nucl. Part. Phys. 37 Recent REVIEW article

European Laser Spectroscopy Options

- In-source: RILIS, ALTO
 - Sub 1 atom/s sensitivity

- Wide range of elements studied (~30 currently accessible)
- Hot Cavity and associated Doppler broadening
- Target chemistry and release time dependence
- In-gas cell laser spectroscopy: LISOL, IGISOL
 - Relatively insensitive to chemistry
 - Access to short half-lives
 - Pressure broadening and shifts
- Collinear: COLLAPS, IGISOL, CRIS
 - High resolution (typically limited by natural linewidth)
 - Highly adaptable

RILIS laser spectroscopy in the Pb region

Using the Cu HFS for isomer selective ionization

How to improve the isotope selectivity of the laser ion source?

Problem – unselective ionization of isobars on hot metal surfaces.

Solution 1 – Reduce the surface ionization

Reduce temperature

Use low work function materials

Trap unwanted elements

(add chemical selectivity to the effusion process)

Solution 2 – Separate surface ions from laser ions Repel surface ions before laser ionization Temporal separation of laser and surface ions

Ideal selective laser ion source? Repeller and trap

K. Blaum et al., NIMB 204 (2003) 331

Implementation of such a device

Challenges:

• High radiation

- radiation hard material
- Gas extraction

High tension

- electronics in HV-cage
- remote control
- Amplification of rf at target
- Feedthroughs
- Robot
 - Connectors
 - Stability
 - Size limitations

A feasible Laser Ion Source Trap design!

Daniel Fink - Poster

Robot coupling

Micro beam gating – selectivity using the laser ion pulse structure

Thinner cavity walls -> more electrical resistance -> higher voltage -> shorter bunch length of laser ions Standard W cavity: Thin Nb cavity:

Data presented by J.Lettry at CERN Sept 2007

Problem: increased complexity, reliability issues, limited gain in selectivity \rightarrow How can this concept be improved?

One step further: create a temporal focus and gate at this point High voltage hot cavity + Field free drift region -> Temporal focus downstream with width

Resonant Ionization Laser Ion Source (RILIS) al distribution of atoms
With Improved Selectivity
Achieved By Ion Pulse Compression
Using In-Source Time-of-flight Techniquehot cavity
acceleration
field region

V.I. Mishin, A.L. Malinovsky and D.V. Mishin

Institute for Spectroscopy Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia

Abstract. This paper describes for the first time the improved selectivity of the RILIS made possible by the time-of-flight (TOF) ion bunch compression. Brief description of the compression principles and some preliminary experimental results are presented. In the off-line experiments short ion peaks of natural Li, Na, K, Tm and Yb are observed as ions leave the RILIS-TOF structure. For Tm the ion peaks of 5 μ s half-height duration are detected and 1 μ s peaks for Sn are predicted. In view of the repetition rate of the ISOLDE-RILIS lasers it is hoped that the selectivity of Sn isotopes production may be improved as much as 100 employing the RILIS with the TOF ion bunch compression and a gating technique.

m, atomic mass units This technique is under development by V. Mishin, at the Institute of Spectroscopy, Troitsk

Optimizing the hot cavity materials or transfer line:

Study of low work function materials for hot cavity resonance ionization laser ion sources

F. Schwellnus ^{a,*}, R. Catherall ^c, B. Crepieux ^c, V.N. Fedosseev ^c, B.A. Marsh ^c, Ch. Mattolat ^a, M. Menna ^c, F.K. Österdahl ^{b,1}, S. Raeder ^a, T. Stora ^c, K. Wendt ^a

^a Fabio Schwellnus, Institut f
ür Physik, Johannes Gutenberg-Universit
ät Mainz, Staudingerweg 7, 55099 Mainz, Germany
 ^b KTH, Royal Institute of Technology, SE-10044 Stockholm, Sweden
 ^c ISOLDE. CERN, CH-1211 Gen
ève 23, Switzerland

Beam purification by selective trapping in the transfer line of an ISOL target unit E. Bouquerel, , R. Catherall, M. Eller, J. Lettry, S. Marzari, T. Stora, The ISOLDE Collaboration CERN, CH-1211, Geneva, Switzerland

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 266, Issues 19–20, October 2008, Pages 4298-4302,

A) RESONANCE IONIZATION LASER ION SOURCES

Laser Ion Sources Worldwide

	Ζ	Scheme	Α	Technique	Facility	Reference		Ζ	Scheme	A	Technique	Facility	Reference
Li	3	Four-step-C	8,9	ABT	UNILAC/GSI	Ewald et al 2004	Sb	51	Three-step-C	128–138	HC RILIS	ISOLDE/CERN	Fedosseev et al 2008
_			8–11		ISAC/TRIUMF	Sánchez et al 2006	т.	50	Thursday C	137-139	ADDI	ISOL DE CEDN	Arndt <i>et al</i> 2012
Be	4	Two-step-A	7, 10–12, 14	HC RILIS	ISOLDE/CERN	Köster <i>et al</i> 1998	Pr	52 59	Three-step-C	120, 122–136	ABPL HC RILIS	ISOLDE/CERN	Sin <i>et al</i> 2006 Gottberg 2011
		Three-step-C	10–12 9–12		ISAC/TRIUMF	Prime et al 2000	Nd	60	Three-step-C	132, 134–141	ABT	IRIS/PNPI	Letokhov et al 1992
Mg	12	Three-step-C	23. 27–34	HC RILIS	ISOLDE/CERN	Köster et al 2003b				138, 139, 140	HC RILIS	ISOLDE/CERN	Gottberg 2011
0			22			Mukherjee et al 2004	Sm	62	Three-step-A	138–143, 145	ABT	IRIS/PNPI	Mishin <i>et al</i> 1987b
			21			Krämer et al 2009	En	63	Three step A	140-143	ABT	ISOLDE/CERN	Alkhazov at al 1983
		Three-step-C	21, 23, 27, 28		ISAC/TRIUMF	Lassen et al 2009	Ľu	05	Three-step-A	141–144	ADT	11(13/11)	Fedosevev <i>et al</i> 1985
A1	13	Three-step-A	20, 21, 23–35	HC DILIS	ISOI DE/CERN	Lassen 2011 Köster at al 2003b				155-159			Alkhazov et al 1990a
AI	15	Two-step-C	26	IIC KILIS	ISAC/TRIUMF	Prime et al 2006				138–145			Letokhov et al 1992
			26, 28, 29			Lassen et al 2009	Cd	61	Three stop A	137–139, 141–144	HC RILIS	IDIC/DNDI	Barzakh et al 2004
			30-31			Lassen 2011	Ou	04	Thiee-step-A	143, 145, 146	HC RILIS	IKIS/FINFI	Barzakh <i>et al</i> 2005
Ca	20	Three-si C	40.72	HO DH IO	IC & COTDILLAR	T 0011				,,			zov et al 1990b
Mn	25	Three-	P PUBLISHING									PHYSICA SCRI	рта <i>t et al</i> 2003b
			Tebelsimve									I III SICA SCR	erg 2011
Fe	26	Two-st Phy	ys. Scr. 85 (2012) 058104 (14pp)							doi:10.	1088/0031-	8949/85/05/058	$104 \begin{array}{c} zov \ et \ al \ 1989a \\ zov \ et \ al \ 1991 \end{array}$
Co	27	Two-st											n <i>et al</i> 1987a
													kh <i>et al</i> 2000
	•		_	_		• •		•		•	_		et al 1991
N1	28	Three-s	Jocopopo		0001	n ionir	701		\mathbf{n}	st atom	na f		zov <i>et al</i> 1992
		Two-st	Vesonanc	t I	ase					n alon		U I [*]	h et al 2000
Cu	29	Two-st		-									n <i>et al</i> 1993
		Two-st	1 1		•								erg 2011
		Two-st	nicloar n	ht	CICC								y et al 2000
Zn	30	Three-	iucicai p	LIYI	2102								al 1988
				v									ath et al 1992
													anc <i>et al</i> 1999
													eroth et al 1987
Ga	31	Two-st T	N Federaceril Ver Ver				-3						rt <i>et al</i> 1987
		V	N Fedosseev ⁻ , Yu Ku	larya	visev- ar	ia v i misnir	ľ						al 1987b
		Thus at											1 et al 1990
		WO-st 1 C	ERN Geneva CH1211 Switz	verland									rt <i>et al</i> 1991
Ge	32	Three-1 2 T.		-f:	VIII	Colortiin on loon	2000	<u>р</u> 24	001 I	Dalainn			anc <i>et al</i> 1992
Sr	38	One-ste	istituut voor Kern-en Straling	siysica,	K.U.Leuve	en, Celestijnenlaan	200D,	B-3	JOI Leuven	i, Belgium			ge et al 2000
Tc	43	Three- 3 In	stitute of Spectroscopy RAS,	Troitsk	t, Moscow 1	region, Russia							vak 2010
Ru	44	Two-st				-							et al 1992
Kn	45	Wo-st E-1	mail: Valentin.Fedosseev@cer	rn.ch									r et al 2003b
Ag	47	Three-											$\frac{1}{2012}$
8			107m, 122–129			Kratz et al 1998				184-203, 205, 209-215			Köster 2002b
			101–108, 110–129	HC RILIS	ISAC/TRIUMF	Fedoseyev et al 2000				183 203, 215			Köster et al 2003b
		Three-step-C	129–130			Kratz et al 2005				182–190			Seliverstov et al 2006
		Two stap C	98-107, 109-117	CC DIL IS	LISOL/LLN	Lassen et al 2009	Bi	83	Three-step-C	188-208, 210-218	HC RILIS	ISOLDE/CERN	Köster <i>et al</i> 2003b
Cd	48	Two-step-C Three-sten-C	131 132	HC RILIS	ISOL/LLIN	Hannawald et al 2000	PO	64	Three-step-C	193–198, 200, 202, 204 192–210, 216, 218 (even)	HC KILIS	ISOLDE/CERN	Cocolios <i>et al</i> 2008
Cu	40	Thee-step-e	98-105, 107, 109, 111, 115, 117-132	IIC KILID	ISOEDE/CERIN	Köster et al 2003b				191–203, 209, 211 (odd)			Seliverstov <i>et al</i> 2012
			129–133			Kratz et al 2005	At	85	Three-step-C	198, 199, 212, 217, 218	HC RILIS	ISAC/TRIUMF	Lassen 2011
In	49	Two-step-C	100-108	HC RILIS	ISOLDE/CERN	Köster 2002a			Two-step-C	197–202		ISOLDE/CERN	Rothe et al 2012
		_	132–135			Dillmann et al 2002			Three-step-C	193–205, 217			
c	50	Two-step-C	108, 110, 112, 116		ISAC/TRIUMF	Lassen 2011	Fr	87	1 nree-step-R	205	HC BILIS	ISAS ^a Troitek	Andreev et al 1986b
Sn	50	Three-step-A	101-103, 108	HC RILIS	UNILAC/GSI	Fedoseyev et al 1995a	11	07	Two-step-C Two-step-R	221	IIC KILIS	15/15 , 110/186	Andreev et al 1987
			107-111, 115, 117, 119, 121, 125, 125-157		ISOLDE/CEKN	Walters et al 2005	Ac	89	Two-step-A	212, 213	GC RILIS	LISOL/LLN	to be published
			105–110, 113, 117, 119, 121, 123, 125, 128–138			Köster et al 2008				225	HC RILIS	ISAC/TRIUMF	Lassen 2011
		Two-step-A	125–132	ABPL		Le Blanc et al 2002	Th	90	Two-step-C	230	RIMS	LANL ^b , USA	Johnson and Fearey 1993
		Three-step-A	107–111, 113, 121	HC RILIS	ISAC/TRIUMF	Lassen 2011	No	02	Two stop A	228-230	DIMC	Mainz University	Raeder <i>et al</i> 2011b
							мр	73	Two-step-A Three-step-A	102	NIIVI3	maniz University	Alegei et ul 1995
							Pu	94	Three-step-A	239-242, 244	RIMS	Mainz University	Ruster et al 1989
							Am	95	Three-step-R	243	RIMS	Mainz University	Erdmann et al 1998

IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) at **PNPI** (Petersburg Nuclear Physics Institute)

Gatchina, Russia

A. E. Barzakh,
D. V. Fedorov,
V. S. Ivanov,
P. L. Molkanov,
V. N. Panteleev (Head of Laboratory),
Yu. M. Volkov

LIS (Laser Ion Source) – method of laser ionization in a hot metal cavity - invented and firstly applied at IRIS [1,2]

RIS/LIS (Resonance Ionization Spectroscopy inside a Laser Ion Source) of massseparator of IRIS facility – in operation since 1991 at 1 GeV Synchrocyclotron of PNPI [2,3]

Targets of mass-separator: UC thick targets (from 5 g/cm² up to 150 g/m²) and refractory metal targets

Isotope shifts (IS) and Hyperfine structure (HFS) for very far from beta stability isotopes of Yb, Tm, Eu, Gd and Tl have been measured at IRIS using this method [4,5,6,7]

NEW GISELE @ GANIL

<u>**GANIL**</u> Ion <u>Source using Electron Laser</u> <u>Excitation</u>

- Off line prototype for SPIRAL2
- TiSa laser, 20m transport path and hot cavity: June 2010 July 2011

3 TiSa cavities from TRIUMF

ANR

Questions? Ask Nathalie Lecesne or Marica Sjodin!

ICIS 2011, 12th -16th September 2011, Giardini Naxos

✓ First Ga⁺ ion beam (+ Mainz U.)

✓ Target and Ion Source for SPIRAL2: UCx + RILIS

✓ Next beams: Sn, Zn, Y, In

Jens Lassen | TRIUMF Resonant Ionization Laser Ion Source

continuous

laser beams

TiSa laser specifications: <u>Repetition rate</u> 10 kHz

Tuning range •BRF TiSa 300 GHz •Grating TiSa 135 THz

<u>Spatial beam quality</u> M² < 1.2

Spectral bandwidth 3–5 GHz

Temporal pulse duration 30–50 ns

Operational:

- (2004) TiSa laser based RILIS:
 - 1st on-line beams
- (2009) full off-line beam development capabilites

(2010) NSERC funded "in-source laser spectroscopy program"

(2011) 1st schedule with above 50% beamtime by T RILIS

T RILIS laser operation with GHz/wk stability

Development:

(2012-14) enhanced beam purity via (i) RFQ-LIS, (ii) pulse structure (2012-2015) continued laser development

- in-source laser spectroscopy
- development of TiSa RILIS schemes

yield database: http://www.triumf.info/facility/research_fac/yield.php

Jens Lassen | TRIUMF Resonant Ionization Laser Ion Source
Hot-Cavity Laser Ion Source at HRIBF-ORNL

Ti:Sapphire Laser System

Pulse repetition rate: 10 kHz Target Heater Bus • Wavelength tuning range: fundamental 715 - 960 nm -Ionizer Heater Bus SHG 359 – 470 nm THG 240 – 310 nm FHG 208 – 230 nm Peak laser power: 2.5 Watt (fundamental) 0.8 W (SHG) 0.12 W (THG) **Target Material** Target 30 mW (FHG @ 215nm)

- Three Ti:Sapphire lasers upgraded with individual pump lasers in 2011
 - Synchronizing the pump lasers
 - Eliminating the Pockels cells
- Continuous wavelength tuning thru the fundamental spectral range

Heater Ionization schemes for 14 elements obtained in off-line studies

Hot cavity ionizer

Sn, Ni, Ge, Cu, Co, Ga, Sr, Mn, Fe, Al, Ho, Tb, Dy, Te

Ionization efficiency for eight elements evaluated in off-line studies

wavelength range	Element	Sn	Ni	Ge	Cu	Со	Ga	Mn	Но
	Efficiency (%)	22	2.7	3.3	2.4	>20	9	0.9	40

The LIS has been installed on-line for production of RIBs

Current Status of HRIBF-ORNL

- Ionization schemes for 14 elements obtained in off-line studies Sn, Ni, Ge, Cu, Co, Ga, Sr, Mn, Fe, Al, Ho, Tb, Dy, Te
- Ionization efficiency for eight elements evaluated in off-line studies

Element	Sn	Ni	Ge	Cu	Со	Ga	Mn	Но
Efficiency (%)	22	2.7	3.3	2.4	>20	9	0.9	40

The LIS has been installed on-line for production of RIBs

- (the same for refractory atoms)
- Efficiency: up to 6 %
- Selectivity: up to 2200

The operational principle of the laser ion source is based on an element-selective resonance multi-step laser ionization of neutral atoms that after production in a nuclear reaction are thermalized and neutralized in a buffer gas.

The dual-chamber laser ion guide

A novel concept was required to overcome losses in efficiency due to recombination of photo-ions in the buffer gas plasma caused by the cyclotron beam.

By separating stopping and laser ionization volumes

 Increased laser ionization efficiency at high cyclotron beam current

 Increased selectivity (collection of survival ions)

Selectivity (⁹⁴Rh): Laser(ON)/Laser(OFF) Ion Collector OFF = 450 Ion Collector ON = 2200

IGISOL-4: overview of facility in 2012

Fast Universal Resonant laser IOn Source (FURIOS) @IGISOL-4, JYFL.

JŶŶĹ

PArasitic Laser Ion-Source (PALIS) at SLOWRI RIKEN

Recommended reading for further information

W. Demtröder, Laser Spectroscopy, 3rd Edition (Springer-Verlag, Berlin, 2003).

W. Demtröder: Atoms, Molecules and Photons (Springer-Verlag, Berlin, 2003).

Atomic Physics. **Exploration through** Problems and Solutions. D. Budker, D. F. Kimball, and D. P. DeMille

W. T. Silfvast, Laser Fundamentals, 2nd Ed. (Cambridge University, Cambridge, 2003).

Laser Photoionization Spectroscopy

Laser photoionization spectroscopy Letokhov, Vladilen Stepanovich Moscow, Izdatel'stvo Nauka, 1987

Introduction to study task: Ionization scheme development

Consider two RILIS laser installations (**A** and **B**) located at different RIB facilities. For each installation choose a suitable element from the list provided and build up a feasible (preferably optimal) laser ionization scheme using the atomic spectral line databases that are available online:

R. L. Kurucz database: <u>http://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html</u> NIST database: <u>http://physics.nist.gov/PhysRefData/ASD/lines_form.html</u>

Hf, Re, Kr, Rn, Rb, Na, Gd, Cr, Ge, Pd

Choose 2 different elements (one for each facility).

You need to choose a suitable element for the particular facility and laser capabilities: Vapor pressures; release from target?; other ionization mechanisms; ionization potentials

Try to create a suitable scheme based on laser capabilities and ionization conditions: Low lying excited states; laser efficiencies; tuning range; harmonic generation issues

Facility B - Thin Target & gas cell ion source

Laser system consists of 2 excimer-pumped dye Fundamental range: 310 - 900 nm Optional 2nd harmonics Using nonlinear crystals Repetition rate: 200 Hz

> DOTC LDS 821

> > 800

WAVELENGTH (nm)

900

VAPOR PRESSURE CURVES OF THE ELEMENTS

Bonus task: Harmonic generation configuration

If your ionization scheme requires harmonic generation, suggest a suitable nonlinear crystal type and configuration for your laser configuration.

If possible download and use the free SNLO software for crystal selection:

http://www.as-photonics.com/snlo