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What do we mean by nonlinear? 

Linear response Nonlinear responses 

x 

f(x) 

x 

f(x) 

Examples: 
Cheap stereos turned up too loud 
Electric guitar distortions (clipping) 



Linear Optics 

• Properties independent of light intensity 
– Linear refractive index – Snell’s Law 
– Linear absorption - Beer-Lambert Law 

 

• Super position principle 
– Can look at inputs singularly and sum at the end 

 
• Frequency of light is constant 

– νin = νout 

 
• Beams do not interact 

– You can cross the beams with no effect 
– (not counting interference effects…) 

 



Nonlinear Optics 

• Refractive index and absorption can be a function of intensity 
– Two photon absorption 
– Self focussing 

 
• Superposition no longer true 

– Sum of responses to two inputs not the same as response to both 
inputs simultaneously 

 
• Optical frequency can be changed 

– Mixing processes 
– Harmonic generation 

 
• Beams can interact 

– Crossing the beams makes interesting things happen 



Which Media are Nonlinear? 

All of them! 

• Solids 

• Liquids 

• Gasses 

• Plasmas 

• Vacuum  

(via generation of vitual e- e+ pairs) 

But it’s only observable if you 
pump them hard enough! 

In general, lasers are required 
to observe nonlinear effects 



The Birth of Nonlinear Optics 

The field was kick started in 1961, by the first demonstration of 
second harmonic generation 

 

 

 

 

 

 

 

 

This was made possible by the realisation of the ruby laser the 
previous year 



Origin of the Nonlinear Response 

The polarisation of atoms and molecules is 
affected by an incident EM wave 

The potential gets very 
flat out at infinity, so the 
electron’s motion can 
easily go nonlinear!  
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Origin of the Nonlinear Response 

Light wave 

Incident light affects the polarisation of atoms/molecules 
throughout the medium, setting up a polarisation field. 

This field reradiates EM waves, and in the linear regime is 
the origin of the refractive index. 

Oscillating 
dipoles 



Origin of the Nonlinear Response 

Second Order 
Susceptibility 
Tensor 

Third Order 
Susceptibility 
Tensor 
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Effects of the Nonlinearity 

DC offset 

Optical 
Rectification 

Doubled frequency 

Second Harmonic 
Generation 



Effects of the Nonlinearity 

Original 
frequency 
again! 



Sum- and difference-frequency generation 

Suppose there are two different-color beams present: 
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Note also that, when i is negative inside the exp, the E in front has a *. 

2nd-harmonic gen 

2nd-harmonic gen 

Sum-freq gen 

Diff-freq gen 

dc rectification 

So: 



Phasematching 

• It seems that a there is potentially an awful lot going on 

 

• Especially consider the cascading of processes that appears 
unavoidable 

 

• How can we make practical use of these effect? 

 

• Well, all the processes happen, but in general with low 
efficiencies 

 

• We can drastically enhance efficiency via “phasematching” 

 



Phasematching 



Phasor Representation 
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Unfortunately, dispersion prevents this from happening! 

The phase-matching condition for SHG: 

Phasematching 

Except in very rare cases near absorption features. 



Birefringent Phasematching 
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The Index Ellipsoid 

x 
The optic axis, is the direction in which 
both polarisations of light experience the 
same refractive index. 

“Critical Phasematching” 
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Birefringent materials have different refractive indices for different 
polarizations. Ordinary and Extraordinary refractive indices can be 
different by up to 0.1 for SHG crystals. 
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ne depends on propagation angle, so we can tune for a given . 

Some crystals have ne < no, so the opposite polarizations work. 

We can now satisfy the  
phase-matching condition. 
 
Use the extraordinary polarization 
for  and the ordinary for 2: 

Birefringent Phasematching 





Light created in real crystals 

Input beam 

Far from  

phase-matching: 

Closer to  

phase-matching: 

SHG crystal 

Input beam 

SHG crystal 

Note that SH beam is brighter as phase-matching is achieved. 

Output beam 

Output beam 



Walk-Off 

The polarisation 
and electric fields 
are represented by 
vectors 

2nd rank tensor 

k 

s 
E 
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Overall displacement 



The Nonlinear Tensor 
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Conventionally the susceptibility is replaced by the nonlinear tensor 2dijk  

dijk is a 3x3x3 tensor, and maps all components of the vector E to vector P 

 

Consider: d(i,j,k) describes the nonlinear coupling of fields Ea and Eb 

  along j and k into the polarisation along i 
 

x,y,z=1,2,3 
 

 

 

 

 

 

 
Note that the order of the E fields is not important     d232 = d223 

x 

y 

z 

P Ea
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d232 describes 



Simplifications of the Nonlinear Tensor 
Using the “piezoelectric contraction” the nonlinear response is now (order of 
fields not important) 

 

 

 

 

Where elements j,k have been replaced with l 

 

 

We can go one step further in lossless media, the Kleinman’s contraction 

For given i,j,k then dijk = dikj = dkji = dkij = djik = djki 
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Now there are only 10 independent 
values! 
The actual elements present 
depends on the crystal symmetry. 



The Effective Nonlinear Coefficient 

An example: 

LBO crystal, E-fields along (1,1,0) and (1,-1,0) 
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Maxwell’s Equations 

Evaluating the effect of an induced polarization on a wave requires solving 
Maxwells equations, with an induced polarization term. 
This gives rise to an extra term in the wave equation: 
 
 
 
 
 
 
 
This is the Inhomogeneous Wave Equation. 
 
The polarization is the driving term for a new solution to this equation. 
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Coupled Wave Equations 
If we consider the interaction of 3 waves propagating in the z direction 

 

 

 

 

 

Substituting the three waves to the inhomogeneous wave equation we get a 
set of 3 coupled wave equations 
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Manley-Rowe Relations 
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Example Analysis of SHG 
Using the coupled wave equations we can now analyse second order processes. 

All we need to do is apply appropriate assumptions and boundary conditions, and then solve the 
equations. 

Quick example for SHG:   
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SHG Analysis Continued… 

Signal grows quadratically 

with length when phasematched 
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Gain depends on wavelength Phasematching is important! 



Quasiphasematching 

sinc 
2 
(  kz / 2 ) 

converted  
field in  
crystal 

Highest nonlinear coefficients don’t generally match with allowed phasematching conditions 

Power oscillates 
between second 
harmonic and 
fundamental 

What if we are 
phasematched 
say, here 



Quasiphasematching 
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Quasiphasematching 
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This is possible in ferro-electric materials, e.g. lithium niobate, by applying a periodic 
high electric field which flips the material domains. 
Efficiency is improved by an order of magnitude! 



Non-colinear phasematching 
The wave vector, k, is actually a vector property. 

This allows us to have non-colinear waves and still achieve phasematching. 

One application is the compensation of “walk-off” 

 

 

 

 

In an appropriate material, it can also be arranged that multiple wavelengths 
phasematch with the same propagation angle, leading to a very large 
bandwidth for the nonlinear process. 

 

3k

2k
1k

If not compensation for walk-off, 
this has the effect of limiting the 
interaction length 



Sum Frequency Generation 
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Difference Frequency Generation 
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Optical Parametric 
Generation/Oscillation 

• For DFG, both of the down-converted (lower frequency) waves experience 
gain 

• Additionally, there exists spontaneously emitted photons (thermal, 
quantum noise) 

• If the gain is sufficiently high, the few photons that are generated with the 
correct polarisation, frequency, and direction, will be amplified 
– i.e. you can get new wavelengths without the need to seed the process! 

Parametric 
Gain 

mirror mirror 

Broadly 
tuneable 
laser-like 
sources 

OPG 

OPO 



Pockel’s Effect 

The second order nonlinearity can also be exploited to modulate the phase, 
amplitude or frequency of light by applying a suitable electric field 

 

Consider the polarisation response: 

 

And define the total susceptibility: 

 

Now, the refractive index is: 

 

Using aTaylor series approx. 

 

 

This effect was observed >50 years before the invention of the laser! 
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Important Considerations 

• Temperature range for phasematching 

• Angular acceptance for phasematching 

• Which element of deff to use 

• Focussing trade-off 

w, mm 

x, mm 

Intensity 

Interaction 
Length 

Walk-off 



Ultrashort Pulses 
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Starting at t=0 
Say all beams 
overlap 

3 pulses begin to separate 
Conversion still happens 
in overlap 

Pulses are separate 
No more conversion 
Generated pulse “stretched” 

Need to consider 
Group Velocities 



Now, Some Applications 



Photo Injector System 

A short, intense, pulse of high energy photons is required at the 
photocathode in order to liberate electrons for acceleration. 

 

Lasers can produce the synchronised, high intensity pulses, except they 
are at much longer wavelengths! 

e.g. Ti:Sapphire 800nm, Nd 1064nm, Er 1550nm 

 

The solution, as we know, is nonlinear optics. 

 

What if we want UV light, as required by some photocathodes. 

 

  Try 3rd harmonic of Ti:Sapphire? 



Third Harmonic Generation 

Can be achieved via a 3rd order process but a very high pump field is required  
due to the weak susceptibility 

 

Thankfully there is a better way – cascaded second order processes! 
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Electron Bunch Length Diagnostics 

• A number of techniques are being refined for the optical characterisation 
of the bunch temporal profile. 

 

• Generally, this is achieved by shifting characteristics of the coulomb field 
onto an optical frequency carrier beam 

 

• This optical signal is then characterised in order to infer properties of the 
electron bunch 

 

The field of THz generation and detection by modelocked lasers is well 
developed, and as the coulomb field is similar in nature to a THz pulse, similar 
techniques are used. 

 

Typically, THz detection is performed via the electro-optic effect. 



Coulomb field of  

relativistic bunch 

probe laser 

non-linear crystal 

(electro-optic effect) 

laser pulse  

(linearly polarised) elliptically polarised 

Refractive index modified by external (quasi)-DC electric field 

intensity dependent 

on ‘DC’ field strength 

quasi-DC description ok if   tlaser <<   time scale of EDC variations  

(basis for Pockels cells, sampling electro-optic THz detection, ...) 

N.B. Time-varying refractive index is a restricted approximation to the physics 

           ( albeit a very useful and applicable formalism for majority of situations ) 

Physics of EO encoding ... standard description 



Electron Bunch Length Diagnostics 

Spectral Decoding 

Spatial Encoding 

Temporal Decoding 

Spectral upconversion** 

o Chirped optical input  
o Spectral readout 
o Use time-wavelength relationship  
 

o Ultrashort optical input 
o Spatial readout (EO crystal) 
o Use time-space relationship 
 

o Long pulse + ultrashort pulse gate 
o Spatial readout (cross-correlator crystal) 
o Use time-space relationship 
 

o  monochomatic optical input (long pulse) 
o Spectral readout 
o **Implicit time domain information only 
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This is “Small signal” solution. High field effects c.f. Jamison Appl Phys B 91 241 (2008) 



GRENOUILLE 

• Grating Eliminated No-nonsense Observation of Ultrafast Laser Light E-
fields… 

• Spectrometer is replaced by a thick nonlinear crystal and a CCD – the 
phasematching condition now determines the angular spread 

• Delay stage has been replaced by a Fresnel Biprism, thereby mapping the 
delay across the CCD and allowing single shot pulse characterisation 



Thank you for listening 


