

Beam Diagnostics using Lasers II

Electro-Optic Longitudinal Profile Diagnostics

Current Status & Future Directions

Allan Gillespie Carnegie Laboratory of Physics University of Dundee

LA³NET, 1st Intl School on Laser Applications, GANIL, France, 17 October 2012

Collaborators in this research:

- D. A. Walsh*, A. Abdolvand, R. Pan[†], M. Tyrk (University of Dundee)
- S. P. Jamison, T. Thakker (* Accelerator Science and Technology Centre, STFC Daresbury Laboratory)
- ✤ A. M. MacLeod (University of Abertay Dundee)
- ✤ T. Lefevre ([†] CERN)

Femtosecond resolution bunch profile diagnostics

(predominantly for electrons)

Menu:

- The need for longitudinal (temporal) bunch diagnostics
- Two distinct classes of temporal diagnostics: direct particle & radiative techniques
- Transverse deflecting cavities
- Spectral domain techniques
- Electro-optic techniques

The need for femtosecond longitudinal diagnostics

1. Advanced Light Sources: 4th generation

Free-Electron Lasers

kA peak currents required for collective gain

- 200fs FWHM, 200pC (...2008 standard)
- 10fs FWHM, 10pC (>2008... increasing interest)
- **2. Particle Physics:** Linear Colliders (CLIC, ILC) e⁺-e⁻ and others Short bunches, high charge, high quality, for *luminosity*
 - ~300fs rms, ~1nC
 - stable, known (smooth?) longitudinal profile
- **3. LPWAs:** Laser-plasma accelerators produce ultra-short electron bunches!
 - 1-5 fs FWHM , \sim 20pC (and perhaps even smaller in future)

Diagnostics needed for...

• Verification of electron beam optics

- Machine tune-up
- Machine longitudinal feedback (non-invasive)

Significant influence on bunch profile from wakefields, space charge, CSR, collective instabilities... machine stability & drift ⇒ must have a single-shot diagnostic

Two distinct classes of diagnostics

Grouped by similar physics and capabilities/limitations

Direct Particle Techniques

 $\begin{array}{l} \rho(t) \ \rightarrow \ \rho(x) \\ \mbox{longitudinal} \ \rightarrow \ \mbox{transverse imaging} \end{array}$

Transverse deflecting cavities

 $\rho(t) \rightarrow \rho(x') \rightarrow \rho(x)$

RF zero-phasing

 $\rho(t) \rightarrow \rho(\gamma) \rightarrow \rho(x)$

"Radiative" Techniques

 $\begin{array}{rl} \rho(t) \ \rightarrow \ E(t) & \ldots \ \text{propagating \&} \\ & \text{non-propagating} \end{array}$

Spectral domain:

- CTR, CDR, CSR (spectral characterisation)
- Smith-Purcell
- Electro-Optic

Time domain:

- Electro-Optic
- Optical Replica
- CTR, CDR (autocorrelation)

Transverse deflecting cavities (TDC)

cavity: transverse kick

beam optics : transverse streak

$$\Delta y'_{\rm cav}(z) = \frac{eV}{pc} \sin(\frac{2\pi z}{\lambda_{\rm cav}} + \phi)$$

$$\Delta y_{\rm screen}(z) = \left\{ \sqrt{\beta_{\rm c}\beta_{\rm s}} \sin(\Delta \psi) \right\} \, \Delta y'_{\rm cav}(z)$$

Time resolution scaling

 $\alpha = \left[\begin{array}{c} \text{deflection gradient} \\ \bar{\gamma}^{1/2} \end{array} \right.$

Diagnostic capabilities linked to beam optics

Rohrs et al. Phys Rev ST (2009)

- Introduce energy chirp to beam via "linear" near-zero crossover of RF
- Measure energy spread with downstream spectrometer \Rightarrow infer initial

bunch profile

time resolution dependent on:

- gradient of energy gain
- dispersion of spectrometer
- initial energy spread

initial γ -z correlation ?

RF zero-phasing examples

DUV-FEL: at 75 MeV

time resolution of ~50 fs

Graves et al. PAC 2001

LCLS: at ~ 9 GeV

- 550m of linac at RF zero crossing!
- 6m dispersion on A-line spectrometer

$1\mu m = 3$ fs rms bunch length

Huang et al. PAC 2011

"Radiative" Techniques

Cause bunch to radiate coherently

Techniques & limitations:

CSR/CTR :pCDR :aOptical Replica:eElectro-Optic:d

propagation effects; detector response; missing phase as for CSR/CTR; plus emission response emission response (? radiating undulator) detector response

Common Problem - Field at Source

Field radiated or probed is related to Coulomb field near electron bunch

Time response & spectrum of field dependent on spatial position, R: $\delta t \sim 2R/c\gamma$

 \Rightarrow ultrafast time resolution needs close proximity to bunch

(N.B. equally true of CDR, Smith-Purcell, Electro-optic, etc)

Spectral domain techniques

Bunch form factor

Coherent diffraction radiation Coherent transition radiation **Coherent synchrotron radiation Smith-Purcell radiation**

far-IR/mid-IR spectrum

- More than an octave spanning in frequency
- Short wavelengths describe the fast structure
- long wavelengths needed for bunch reconstruction

Simplicity (not always!) Empirical machine information, real time Information on fast and slow structure

Against:

No explicit time profile (but reconstruction *may* be possible) Significant calibration issues

example: single shot CTR spectrometer at FLASH

cascaded dispersive grating elements, and pyroelectric detector arrays

Concept of electro-optic profile diagnostic

(all-optical intra-beamline pickup of relativistic bunch Coulomb field)

Principle: Convert Coulomb field of e-bunch into an optical intensity variation

Encode Coulomb field on to an optical probe pulse - from Ti:Sa or fibre laser

Detect polarisation rotation proportional to E or E², depending on set-up

Physics of EO encoding ... standard description

Refractive index modified by external (quasi)-DC electric field

quasi-DC description ok if $\tau_{laser} \ll$ time scale of E_{DC} variations (basis for Pockels cells, sampling electro-optic THz detection, ...)

N.B. Time-varying refractive index is a restricted approximation to the physics (albeit a very useful and applicable formalism for majority of situations)

Electro-Optic Techniques

Variations in read-out of optical temporal signal

Spectral Decoding

Temporal Decoding

Spectral upconversion**

- Chirped optical input
- Spectral readout
- Use time-wavelength relationship
- o Ultrashort optical input
- Spatial readout (EO crystal)
- Use time-space relationship
- Long pulse + ultrashort pulse gate
- Spatial readout (cross-correlator crystal)
- Use time-space relationship
 - quasi-monochomatic optical input (long pulse)
 - Spectral readout
 - **Implicit time domain information only

complexity

0

1. Spectral Decoding

Attractive simplicity for low time resolution measurements e.g. injector diagnostics

Rely on t- λ relationship of input pulse for interpreting output optical spectrum. Resolution limits come from the fact that the EO-generated optical field doesn't have the same t- λ relationship

temporal resolution limits...

In general spectral decoding limited by chirp

$$T_{\rm lim} = \sqrt{12\pi\beta}$$

For specific laser profiles, can relate to FWHM durations...

 $\tau_{\rm lim} = 2.61 \sqrt{T_0 T_c}$; for a Gaussian pulse

Unlikely to get better than 1.0 ps (FWHM) with spectral decoding

Concepts based on T_c <20 fs pulses must address extra problems of optical GVD (not clear these can be overcome without significant complication)

2. Single-shot Temporal Decoding (EOTD)

(gives best time resolution at present)

Temporal profile of probe pulse → Spatial image of SHG pulse

Rely on EO crystal (ZnTe) producing a *optical temporal replica* of Coulomb field Measure optical replica with *t-x* mapping in 2nd Harmonic Generation (SHG)

- stretched & chirped laser pulse leaving EO crystal assembly measured by short laser pulse via single-shot cross correlation in BBO
- Iarge (~1mJ) laser pulse energy required (via Ti:Sa amplifier)

Technique limited by

- gate pulse duration (although FROG, etc. could improve)
- EO encoding efficiency, phase matching

Practical limitations: complexity of laser systems involved transporting short-pulse laser (gate pulse only)

Single-shot Temporal Decoding of optical probe

Temporal profile of probe pulse \rightarrow Spatial image of SHG

Symmetric crystal geometry: 400nm "walk-off" orthogonal to time-axis

Electro-optic diagnostics at FLASH

Many experiments on FLASH - one of first of the short-bunch machines

- o temporal decoding
- spectral decoding
- benchmarking against deflecting cavities
- 450 MeV, γ ~1000
- bunches with peak + pedestal structure
- 20% charge in \sim 100 fs spike

Temporal Decoding Diagnostic

electrons..

transverse deflecting cavity

EO station

temporal decoding in practice..

currently the highest time-resolution non-destructive diagnostic demonstrated (at DESY FLASH)

Benchmarking EO by LOLA cavity (TDC)

LOLA: Transverse Deflecting Cavity = fast electron oscilloscope

Resolution: 100fs (20fs with special beam optics)

Disadvantages: no absolute timing (high time jitter) <u>destructive diagnostic</u>

Transverse deflecting cavity (1960's cavity from SLAC) located next to EO diagnostic

Benchmarking of EO against LOLA TDC

Benchmarking of Electro-Optic Monitors for Femtosecond Electron Bunches

G. Berden,¹ W. A. Gillespie,² S. P. Jamison,³ E.-A. Knabbe,⁴ A. M. MacLeod,⁵ A. F. G. van der Meer,¹ P. J. Phillips,² H. Schlarb,⁴ B. Schmidt,⁴ P. Schmüser,⁴ and B. Steffen⁴

plus Phys. Rev. ST, 12 032802 2009

So are all the problems solved...?

Low time resolution (>1ps structure)

- spectral decoding offers explicit temporal characterisation
- relatively robust laser systems available
- diagnostic rep rate only limited by optical cameras

High time resolution (>60 fs rms structure)

- proven capability
- significant issues with laser complexity / robustness

Very high time resolution (<60 fs rms structure) limited by

- EO material properties (phase matching, GVD, crystal reflection)
- laser pulse duration (TD gate, SE probe)

Encoding Time Resolution... material frequency response, $R(\omega)$

- velocity mismatch of Coulomb field and probe laser
- frequency mixing efficiency, $\chi^{(2)}(\omega)$

Can we achieve even better resolution ...?

Encoding

Detector Material:

- GaP
- move to new material? (phase matching, $\chi^{(2)}$ considerations)
- could use GaSe, DAST, MBANP or poled organic polymers?
- use multiple crystals, and reconstruction process
- possibility of artificially-produced "metamaterials"

Decoding

Gate pulse width ~ 50 fs

- Introduce shorter pulse
- Use (linear) spectral interferometry
- Use FROG Measurement (initially attempted at FELIX, 2004)

or Alternative Techniques: Spectral Upconversion

<u>If</u> drop requirement for explicit time information at high frequencies, other options also become available ...

alternative ways forward...

Current limitations are from material properties

TO Phonon-resonances at 3-15 THz (material dependent)

All (inorganic) materials will have some phonon resonance effects

Can we use a set of crystals to cover larger range?

requires (uncertain) reconstruction to find temporal profile (relative phase shifts, phase matching, efficiency between crystals) → complication of system would multiply

If reconstruction needed anyway, reconsider spectral techniques ... BUT traditional spectral techniques have difficulties :

> *long-wavelength / DC-component transport extreme ("100%") spectral bandwidths for detection*

A possible solution : Electro-optic spectral upconversion

Back to the physics of EO encoding...

New concepts & understanding of very high time resolution techniques come from a frequency mixing physics description

Frequency domain description of EO detection...

Electro-optic encoding is a consequence of sum- and difference-frequency mixing

for arbitrary probe and Coulomb pulses...

- convolve over <u>all</u> combinations of optical and Coulomb frequencies.
- includes field phase (chirp), general phase matching, optical GVD, etc

Previous refractive index formalism comes out as subset of solutions (restriction on laser parameters)

Spectral upconversion diagnostic

measure the bunch Fourier spectrum...

- ... accepting loss of phase information & explicit temporal information
- ... gaining potential for determining information on even shorter structure
- ... gaining measurement simplicity

Long pulse, narrow bandwidth, probe laser

$$\tilde{E}_{\text{out}}^{\text{opt}}(\omega) = \tilde{E}_{\text{in}}^{\text{opt}}(\omega) + i\omega a \tilde{E}_{\text{in}}^{\text{opt}}(\omega) * \left[\tilde{E}^{\text{Coul}}(\omega)\tilde{R}(\omega)\right]$$

$$\rightarrow \delta\text{-function}$$

same physics as "standard" EO

$$\tilde{E}(\omega_0 + \Omega) = \tilde{E}(\omega_0) + i\omega a \tilde{E}(\omega_0) \left[\tilde{E}^{\text{Coul}}(\Omega)\tilde{R}(\Omega)\right]$$

(\Omega can be < 0)

different observational outcome

NOTE: the long probe is still converted to optical replica

Spectral upconversion diagnostic

Results from experiments at FELIX (Feb 2009) in FEL'09; and *Appl. Phys. Lett.* 96, 231114 (2010)

Theory / Expt. comparison

Coulomb field of bunch

SU measures long wavelength components

non-propagating spectral components which are not accessible to radiative techniques (CSR/CTR/SP)

These experiments had a less than ideal laser: ~5ps, not very narrow spectrum

Temporal Limitations of EOTD

cross-correlation method

- optical probe with electron bunch info
- ultrafast "gate" for time \rightarrow space readout

$$I_{SHG}(x \leftarrow t) \propto \int I_{probe}(\tau) I_{gate}(t-\tau) \mathrm{d}\tau$$

• Resolution is limited by gate duration (+phase matching)

Practical implementation limits gate to >40fs fwhm (laser transport, cross-correlator phase matching/signal levels)

- Weak probe due to EO material damage limits...
- Compensated by intense gate pulse

Signal/noise issues from this mismatch in intensities

Higher resolution through "X-FROG" cross-correlation, frequency-resolved optical gating

- Obtain both time and spectral information
- Sub-pulse time resolution retrievable from additional information

R&D goals:

- Develop XFROG with realistic EO intensities
 - signal/noise issues; non-degenerate wavelengths (?)
- Develop & demonstrate retrieval algorithms
 - including "spliced data"

Solution in multiple crystals and crystal orientations...

Questions on how to "splice" data.

- Response amplitude can be measured from detection of tuneable THz source
- Spectral complex response can be measured from THz-TDS from linear THz-TDS ... if we have a known ultrashort source

Femtosecond longitudinal diagnostics

Current best resolution achieved: ~120fs FWHM (~60fs rms) Targeting 20fs rms resolution with Electro-optic diagnostics

Current limitations of electro-optic detection:

Time resolution restricted by
- probe laser duration (~40-80 fs)Implementation limited by- femtosecond laser complexity

Solutions?

Spectral upconversion – quasi CW laser probes beam with EO effect

All-optical parametric amplification of probe signal

Frequency Resolved Optical Gating (FROG) for sub-pulse femtosecond characterisation of amplified optical probe

Nano-structured materials

for bypassing of EO phase-matching constraints

Fibre laser spectral decoding

(low power fs lasers), and temporal retrieval algorithms

Summary

Deflection cavity / zero crossing

- 10fs resolution capability, in principle
- huge infrastructure for high energies
- destructive technique
- Radiative spectral techniques
 - demonstrated with extreme broadband & single shot capability
 - empirical tune-up, stabilisation
- Electro-optic temporal techniques
 - limited by materials and optical characterisation
 - solution in multiple-crystal detectors /alternative materials (?) and in FROG-like techniques
- Electro-optic upconversion
 - converts extreme broadband signal into manageable optical signal
 - strong potential for empirical feedback system

CLIC Project at CERN (Compact Linear Collider)

Feasibility study for 3 Tev (c.o.m.) electron-positron collider

UK collaboration with CLIC starting 2010

5 UK Universities + Daresbury Laboratory

Main Beam Instrumentation for CLIC

CTF3 two-beam test stand

EO Project at Dundee & Daresbury

- Measure 150 fs electron bunches with a precision of <20 fs using EO techniques
- Provide EO spectral decoding bunch monitor for 200 MeV, 1.4 ps CALIFES beam at CLIC Test Facility

CTF3 Califes Electro-Optic Bunch Temporal Profile Monitor

Robust (low power) fibre laser implementation of spectral decoding:

- usually only low time resolution capability
- examining temporal retrieval algorithms
- possible alternative front-end probe for optical amplification scheme
- 1. Laser laboratory completed
- 2. Laser & synchronization system installed and tested.
- 3. Control system design completed. All cables and optical fibres installed.
- 4. Transfer lines for laser and OTR installed in the accelerator.
- 5. Two monitor vacuum chambers are being assembled.

System expected to be installed in November 2012, with first measurement in December.

P: Polarizer H: Half wave Laser:

plate **Q**: Quarter wave plate Wavelength: 780 nm

: Mirror with actuators

: Finger camera

Wavelength: 780 nm Duration: 100 fs Repetition: 37.4815 MHz Pulse energy: 2.7 nJ **Crystal:** Thickness: 1mm Separation: 5-10 mm

Spectral upconversion diagnostics

Optimising upconversion with narrow-bandwidth (long duration) optical probe

High-power laser-driven THz sources being used as electron beam mimic

- Ti:S probe, with tuneable bandwidth (spatial chirp compensated)
- known THz pulse scanning time-domain THz techniques available
- using Ti:S-driven THz source with MV/cm fields

Systems being implemented in tests on ALICE test accelerator at Daresbury

further shifts Oct/Nov 2012.

Parametric amplification and nanosecond laser-driven femtosecond diagnostic

SIVERSIT:

DUNDEE

- Probe non-collinear amplification stage largely designed
- Available 50ps Nd:YAG, synchronised to femtosecond Ti:S probe and THz source

Combined experiments with THz, 800nm probe and parametric optical amplification in early 2013.

Activities at the University of Dundee

EO Detection solution in thin films & 2D structures

- to bypass propagation effects

Thin film polymers

- Demonstrated broadband EO response
- Sufficient EO efficiency
- ?? Accelerator environment, material stability ??

Nano-structured materials

- Electro-optic effect from short-range structure.
- ... limited experimental demonstrations

Materials and Photonic Systems (MAPS) Group

Fabrication & Applications of Nanocomposites

Dundee group expertise:

- Metal-dielectric nanocomposites (MDN)
 Ag & Au
- DC electric field-assisted selective dissolution of nanoparticles in nanocomposites (patented technology)
- Laser structuring of metal surfaces

Overall R&D goals

- Fabricate percolation films and metal-dielectric nanocomposites at Dundee U.
 - ightarrow a type of "metamaterial" using electric field & laser processing
- Test these films for required E-O properties at Daresbury Laboratory
- Utilise films at CLIC and at the PSI XFEL test facility

Progress

3 nanosecond scanning laser systems (wavelengths 355, 532 & 1064 nm) in place for materials processing, since 2011

pulsewidth <15ps, avge power up to 4W at 355nm, 8W at 532nm, 16W at 1064nm

Picosecond scanning system (Coherent Talisker ULTRA 355-04) installed May 2012. —— Operates at same 3 wavelengths

Materials and Photonic Systems (MAPS) Group

Key EO papers: Dundee Group

- NIM. Phys. Res. A429 (1999) 7- 9
- PRL 85 (2000) 3404-7
- PRL 88 (2002) 124801/1-4
- Opt. Lett. 28 (2003) 1710
- PRL 93 (2004) 114802/1-4
- Opt. Lett. 31 (2006) 1753-55
- PRL 93 (2007) 114802/1-4
- PRL 99 (2007) 164801/1-4
- App Phys B (2008) 91,2 241-247
- Phys Rev. (2009) ST, 12, 032802
- PRL (2010) 96, 231114

