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Linear colliders – ILC/CLIC 

• New colliders e-/e+ high precision machines. 
• Two main current designs - International Linear 
     Collider (ILC) and Compact Linear Collider (CLIC). 
• Extreme focusing/charge/luminosity requirements. 
• Making focussed beams of 1 – 5 nm! 
• Need high quality measurements of beam size, 
     position, charge, duration………. 

Ref. 1 
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Beam instrumentation requirements 

CLIC parameters: 
T. Lefevre et.al. 

All these systems are research devices themselves! 

Ref. 1 
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Beam profile monitors – emittance measurements 

•  Need to monitor beam size/emittance throughout machine to maintain luminosity. 

•  Standard options – wire scanners or optical transition  
   radiation (OTR) screens. 
  
•  Wire scanners – simple, cheap, resolution > few mm, easily    
damaged in high charge beams, invasive. 
•  OTR –  relatively simple, destructive, resolution (although 
being addressed), damage to screen, radiation damage to 
optics/camera. 

FACET OTR screen 
bunch damage 

ATF2 OTR screen 
Laser damage 

Ref. 11  
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Laser-wire principle 

Laser system – choice of parameters 
Beam transport – 

how far? how many stations? 

Particle beam – energy,  
temporal structure 

Interaction Point (IP) –  
focusing and scanning, alignment 

Beam separation and extraction – where? 

Post – IP – diagnostics,  
energy, beam dumping 

Detection – how? where? 
background? S/N? 
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(inverse) Compton scattering 

•  Inelastic scattering of photon and electron –  
    photon upshifted and scattered. 
   
•  Scattering angle – predominantly in 1/g cone . 
   
•  For relativistic e- photon scattered close to beam. 

•Cross section sC related to low energy elastic Thomson scattering cross section sT. 

Ref. 2 
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Compton scattering cross section 

What does this equation look like? 

Cross section drops off with 
beam energy. 
 
Need more photons (power) for 
same signal at higher energy. 

3 typical laser wavelengths 

For ILC (e- 250GeV) sC for 532nm only 30% sT ~ 0.3 × 0.66 × 10-24 cm-2 – pretty small. 

Big impact on laser requirements! 
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Scattered photon signal   

Photon energy for 1.3GeV e- (ATF2) 

Detect scattered photons 

Photon energy for 250GeV e- (ILC) 

Detect electrons? 

No. scattered photons given by: 
constant laser power 

For Gaussian beams this reduces to: 
ss = (sL

2 + se
2) 

Want lots of photons and small beam sizes 

dy = yL - ye 

Ref. 2 
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Measuring really small beams – interference fringe monitor 

For < 1mm beams need something different – scan interference fringes across 
beam and look for modulation in Compton signal. 
This monitor is *really* hard to align and make work well………. 

Ref. 6 
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Laser-wire experiments 

• Stanford Linear Collider  – beam scanned across laser spot  
                                                  reflective focusing optics 
                                                  no astigmatism (laser beam stationary) 
                                                  350nm THG Nd:YLF, 1mJ, 10MW,  prototype (ref. 4). 
  
• KEK ATF2 damping ring –  cw (quasicontinuous DR bunches) 
                                                  cavity (enhance power) 
                                                  cavity on  moveable table scanned through beam 
                                                  vertical design e- beam size s = 8.8mm 
                                                  laser waist (determined by cavity) wo = 14.8mm,  
                                                  532nm, 25mW input to cavity, stored power 1 – 3W 
                                                  measured e- beam size  s = 9.8 ± 1.5mm 
                                                  low signal counts, S/N ratio (ref. 14). 
 
• Oakridge SNS                  – H- ion laser-wire, measure e-, ion bunch 50ps  
                                                 Nd:YAG, 1064nm, 30 Hz, 7ns  
                                                 active stabilisation of beam transport (> 200m),  
                                                 2D scans over beam - translate final turning mirror 
                                                 9 stations, 1 laser, beam sizes s ~ 2 – 3mm (ref. 13). 
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JAI laser-wire experiments – PETRA and ATF2 

• PETRA – emphasis on usable system, 2D scanning (not simultaneous) 
                      6 GeV e+, 130kHz, 40ps 
                      laser focus scanned by piezo  mirrors, 2.5mrad, 1.25mm (V), 3.75mm (H) 
                     designed for larger beam sizes, runs remotely 
                     Q switched 6ns Nd:YAG, 532nm, 20Hz  
                     (upgrade: mode locked oscillator/amplifier, 200ps, 130kHz) 
                      knife edge scan to measure laser spot size wo = 9mm 
                      convoluted beam sizes s = 30mm (V), 294mm (H), scans from 10mm to 10mm 
                      automated beam finding and scanning (ref. 12). 
 
 

ATF2 – case study (ref. 8) 
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ATF2 laser-wire 

• ATF2 major international collaboration – scaled test of ILC optics. 
• Aim – electron beam size < 40nm. 
• Major test of new diagnostics – high resolution (< 5nm) bpms, fast feedback etc. 
• Laser-wire designed for highest resolution – measurement ~ 1mm. 



LA3NET school 17th October 2012 14 

Laser-wire specifications 

•  Laser-wire IP on extraction line of ATF2 .     
•  1D vertical scanning system. 
•  Joint set up with OTR high resolution experiment. 
•  Beam energy 1.3 GeV. 
•  Pulse duration s = 30ps. 
•  Single bunch, single train, 1.56Hz. 
•  Can run multibunch – spacing ~ 154ns. 
•  Vertical beam size at IP 1 – 10mm. 

Beam from laser hut 

Quadrupole 
magnet 

Laser exit window 

Vacuum chamber 

Electron beam line 

Beam delivery to final focus 

Ref. 8 
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ATF2 laser system 

Seed laser @ 357MHz locked to  
sub-multiple of accelerator frequency  

Seed pulse injected into Nd:YAG   
flashlamp pumped regenerative  
amplifier – 1.56Hz, 200ps, 10mJ 

Linear amps up to 500mJ  SHG – 532nm, 100mJ 

Issues – beam quality, pulse duration, reliability  

Ref. 2 
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Beam delivery laser hut 

accelerator 
IP 

electron beam pipe 

IP 

vacuum  
chamber 

electron beam 

laser beam 

actuator driven  
mirrors 

IP ~ 17m from laser hut, on top of accelerator. 
 
Beam transported down to accelerator level. 
 
Multiple reflections – lossy. 
 
Plan to automate alignment – cameras behind 
mirrors, steer with actuators on mirror axes. 
 
Optics all fused silica – radiation hard. 

post IP diagnostics 

PLAN 

SIDE 



LA3NET school 17th October 2012 17 

Perfect Gaussian beam focusing 

Spot size wo  

Rayleigh range zR 

Caution! w = 2s for Gaussian beams – endless possibilities for confusion…… 

zR = pwo
2 

l 

wo= lf 
pwin 

Spot size (resolution) 
limited to ~ l 

(‘diffraction limited’) 
 
Want:  
•  short l 

•  short f 
•  large win 

 
High f/# optics – hard 
to achieve. 
 
But small spots  
diffract more quickly  
– smaller zR. 
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Not quite that simple……… 

No laser beam perfect – can be quantified by beam quality factor ‘M2’. 
M2 = 1 – perfect Gaussian beam. 

New beam size W = Mw – need to consider effect on lens aperture. 
If aperture D fixed have to reduce w by factor M to fit (D > pw) so at final focus: 

Wo = M2lf 

pWin 

Large diameter, short f, corrected lenses very expensive! Want M2 ~ 1. 
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ATF2 Focusing 

•  Special lens designed – no spherical aberrations for smallest focus.  
•  Complex and expensive – only fused silica for radiation hardness. 
•  Bolted to vacuum chamber – whole lens + chamber system scanned vertically over 
    electron beam. 

Refs. 2, 8 
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Laser propagation through focus 

Can’t measure beam at focus – too small. Can do similar measurement with longer lens 
to study laser propagation through focus. Not ideal………….. 

Beam astigmatic, non-Gaussian profile 
Hard to model propagation analytically 
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Focusing problems 

Odd laser propagation makes it difficult to correctly predict beam size and intensity 
in beam transport and focusing – damage to lens and vacuum window despite careful  
design and high performance AR coatings. 

Back reflection through IP focus  
on lens – small damage spot 

Large damage spot on vacuum window 
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Interaction point and overlap 

Need to overlap laser/electrons beams in space and time (~ 10mm, 30ps). 
 
Use signals from OTR near to electron beam and obscuring laser beam to achieve this. 
 
Spatial: repeatable unless laser alignment changes. 
Temporal: every shift. 
 
Hard – need to consider how this will be done as part of diagnostic design – automated? 

Ref. 2 
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Detection 
Dipole magnet separates  

electrons and photons 
Photons extracted through 1mm Al window 

Detector placed next to window 

Cherenkov detector – g converted to e-/e+ pairs in lead, generate Cherenkov  
radiation in aerogel, guided to PMT below beam line. 
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Results and analysis 

Electron beam aspect ratio very large – cannot assume laser same size across particle beam. 
 
Try to model laser propagation and solve full overlap integral for particle and laser beam 
distributions – complex analysis because of electron beam size and laser properties – not  
just simple adding of beam sizes in quadrature. 

e- ~ few mm 

~ few 100 mm 

laser scan 
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Preliminary scans and analysis 

Vertical scan – sey = 1.09 ± 0.22 mm 

Horizontal scan –  
sex = 236.9 ± 2.98mm 

Demonstrated 1mm beam size 
measurement – scan ~ 2 min. 

Data: L. Nevay, A. Aryshev, L. Corner 
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Improvements to ATF2 laser-wire 

•  Laser – new fibre laser system: higher rep rate (intra train scanning), excellent 
    beam quality, efficient, stable. 

 
•  Subtraction of beam jitter – bpm data. 

 
•  Real time analysis and fitting of data. 

 
•  Automated laser propagation measurement and laser energy normalisation. 

 
•  Easy operation for non-specialist in control room. 

 
•  Reduction of background, improving S/N. 

 
•  Tests on larger/smaller electron beam sizes. 
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Fibre laser and amplifiers 
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Fibre laser development 

• Laser at KEK not completely suitable for laser-wire. 
• Poor spatial quality – larger focus, worse resolution. 
• Temporal profile (200ps) not well matched to electron bunch (30ps) 
• Inefficient (flashlamp pumped), limited in repetition rate. 

Project in Oxford to develop 
new fibre laser system for 

laser-wire. 

Fibres: efficient, waveguides, excellent spatial 
mode quality, high repetition rate, diode  
pumped, no active cooling. 

Standard SM fibre amplifiers – low energy. 
Solution – very large mode area photonic crystal 
fibre – still single mode, energy 100uJs/pulse. 
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Fibre laser results 

Aim – better laser source for laser-wire, smaller laser 
spot, multibunch scanning. 
Spec – 100mJ @ 6.49MHz in ir, M2 <1.1, 1 – 10ps, Dl < 
1nm in green. 
Expt – amplify commercial fibre laser in photonic 
crystal fibre, burst mode. 
 
Results – pulses amplified from 1.4mJ to 268mJ in 70cm 
of PCF (gain 32dB/m).  
M2

x = 1.07 ± 0.02, M2
y = 1.09 ± 0.02. 

Lower energy pulse in green Dl = 0.5nm. 
Lower energy pulse compressed to s < 1.5 ps. 

Beam at focus 

Ref. 2 
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Laser-wire design considerations  

• Particle beam – energy, size, duration, repetition rate. 
 
•  Direct impact on laser choice: wavelength - spot size, cross section. 
   
•  Power required – S/N, cross section, beam transport losses. 
 
•  Repetition rate – intratrain scanning? Scanning speed. 
 
•  Pulse duration – short for temporal profiling, too long wastes energy. 
 
•  Focusing – more difficult for smaller spot size (higher resolution). 
 
•  Detection – energy of scattered photons/electrons. 
 
•  Accelerator design – position of laser-wires, separation of beams. 
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Choosing a laser – pick a nice colour? 

• Laser properties – temporal, spectral, spatial 
 

• Temporal – particle bunch length, repetition rate, scanning, CPA, bandwidth 
 

• Spectral – wavelength, cross section, resolution, frequency conversion, availability,  
    bandwidth. 

 
• Spatial – resolution, focus size, focusing optics, mode quality, beam transport, damage 

Total number of lasers – COST! 
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• New generation of accelerators require high performance diagnostics. 
 

• Development of these diagnostics major science research projects. 
 

• Laser-wires provide non-invasive, high resolution beam size/emittance measurement. 
 

• Demonstrated in number of facilities world wide: 
• Electron/positron/H- machines. 
• Multiple stations, 2D scanning, moving beam or laser. 
• Usable in standard machine running. 
• High resolution (<1 mm). 
 

• Improvements needed in laser technology, data analysis, cost. 
 

• Need to be integrated in new accelerator designs. 
 

• Plenty of research still to do! 

Summary 
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