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Facilities Council

Overview @ Science & Technology

Timing requirements for accelerators

‘Conventional’ RF fiming systems

E Going optical
» The pulsed approach
» The CW approach

Challenges for the future...
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Timing requirements @ Science & Technology

Facilities Council

Facility size
Optical clock
10km = distribution with RF system with fibre
feedback distribution
1km — :
(eg. Light sources) (eg. Synchrotrons)
100m —
RF, optical fibre,
free space RF system
10m —
(eg. Plasma accelerators) (eg. lon sources)
| | |
fs ps ns Timing tolerance
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Introduction to timing systems @ Science & Technology

Facilities Council

Stable Clock

Distribution Cables

(10m - 3km)
Interfacing and Controls
Svync. controls Sync. controls Sync. controls
. Sync. controls
Photoinjector ccelerat Seed Probe
cceleratin
Svnc. controls | Laser g Laser Laser

J J\% L Undulator L%
. N ANNAS
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Basic RF timing (small facility) @ Science & Technology

Facilities Council

Precision Microwave Oscillator
(typ. Crystal Oscillator at 10 MHz)

Low Loss Coaxial Cables

(<100m)
Interfacing and Controls
Low level RF Low-level RF
PLL Low level RF PLL
— PLL
o ovel RE Photoinjector A ocelorat EXpt.
cceleratin Laser
PLL Laser J Undulator

@- 7 mmm -
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Challenges in RF distribution @ Science & Technology

Facilities Council

E Attenuation over large distances

Coaxial cable attenuation (dB/m) Optical fibre attenuation (dB/m)

100
08 EUE 0.2 dB/km
/ 1 i Absorption

E 06 1 10f peaks
5;— / E 5p w-loss
IR S} indows
g / % 1 L

02 /<—— 02 dB/m 3 0.5k

0.0

0 2 4 6 8 10 12 14 16 18 0 1

800 1000 1200 1400 1600
Wavelength (nm) ==
[adapted firom Miva, Hasaka, and Mivashitaf.
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Challenges in RF distribution Science & Technology

Facilities Council

E Timing jitter N
— Temperature
— Vibrations
— Dynamics in oscillators | S e, e e
— Dynamics in distribution cables " e e e R

[ppmiaC]
S
S

— 1300MHz, inrcreasing temperature
--=-- 1300MHz, decreasing temperature

-40 (
DC Offset Voltage: Temperature Effect g -60
Model ADEX-10L: 2 Samples, LO Power 4 dBm E 80
0.5 E
-100 T~ ! ! ! ! !
120 ,‘" | | — 1300MHZ, inrcreasing lemperature
[ Bt E LR A —_——— e e o F --=--1300MHz, decreasing lemperature
o ——— — - —— -140 |1 | . —8—216.6MHz, inrcreasing temperature
w e ——" ) I - - 216.6MHz, decreasing temperature
Z 03 | o 0
& ) w— 1300MH2, inrereasing lemperature
E’ = ==~ 1300MHz, decreasing lemperature
S 0.2 -20 1 1 =8 216.6MHz, Inrcreasing temperature
> - - 216.6MH2z, decreasing temperalure
3 ‘ —0°C — 25°C = = 70°C ‘ 4
R S 2
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Frequency, MHz -100
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Timin g J Itter @ Science & Technology

Facilities Council

E What is timing jittere

AL AW -

optical pulses RF signals glue:égoens

P Why does it mattere ——

different energy at
different times

RF phase in
cavity

— Beam energy spread

Undulator N
— Pump-probe experiments °->|]]]]]]]]]]' SETE %

L
— FEL seeding m-

Probe laser
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Science & Technology
Facilities Council

Characterizing timing jitter @

¥ How is jitter measurede 70
Assuming no amplitude noise:
Time domain description

v(t) = Vysin(2rf .t + @(t))

Mean-squared spectrum
92(O) = [, Sp () df

For small modulation (<< 1rad.):
L(f) = Sp(f)/2

Conventional form (dBc/Hz)

Amplitude

F RMS jitter:

Frequency

Trms(fl:fz) =~ JZ f;lz 10LUN/10gf

Zn'c
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Jitter In timing systems @ Science & Technology

Facilities Council

B Sources of jitter

Temp. drifts Vibrations (<10kHz Oscillator dynamics
(<1Hz)  -too} ( ) (>10kHz) :

A A
< Y \

-110 &

-120 -

L(f (dBcHz)

-130

-140

-150 RS W e S |
4

Ll T SN (A £ o L ET B
10° 10
Frequency (Hz)

Trms(F1,f2) = znlfc\/z f;lz 10L(D/10qf
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RF phase detection and locking @ Science & Technology

I RF phase detection with a mixer
Probe signal /\ /" \_/\_, oF \/)-(\ > |F
Reference signal /" \_/\ /\/ JO
¥ Ideal mixer multiplies the probe and reference signals
Vie(t) = A cos(wypt) * Agp cos(wgpt + @)

— A—LO;RF{cos((wLO—pr)t — @) + cos((wpotwgp)t + @)}

. ArpA
if wo = WgF ":> = ~LORE{cos ¢ + cos(2wpt + @)}
DC Voltage ‘ Needs to be filtered out
Linear for ¢ ~ n/2 with a low pass filter
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RF phase detection and locking @ Science & Technology

Facilities Council

amplifier

Probe signal /\/\/\/ . —>— if
Lpg amplifier
| : PID 3 |
_ mlxer<X> l ’ controller
Reference S|gnal/\/\/\/

o
T
M

4y

o
T
T

gy

amplifier

E Resolution limits of a low noise mixer ~ 0.02°
— At 1.3 GHz=42fs
— At3GHz=18.5fs
— At10GHz=55fs
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Basic RF timing (small facility) @ Science & Technology

Facilities Council

Precision Microwave Oscillator
(typ. Crystal Oscillator at 10 MHz)

Low Loss Coaxial Cables

(<100m)
Interfacing and Controls
Low level RF Low-level RF
PLL Low level RF PLL
— PLL
Photoinjector : Expt.
Low level RF Laser Accelerating Undulat Laser
PLL Cavities nauiator
— AN
S\ NN
0.03-0.2° 0.1-5ps

(60-400fs @ 1.3GHz)
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Goln g Optl o | I @ Science & Technology

Facilities Council

F Advantages of an optical system
— Quieter clock
— High bandwidth
— Low attenuation

Similar to coax

E New challenges / ~ 401/ C/m

— Phase change with temperature

— Dispersion compensation

— Polarisation effects: Polarisation mode dispersion (PMD)
— Conversion back to RF

— Reliability 22¢
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Introduction to timing systems @ Science & Technology

Facilities Council

Precision
<€— Microwave
Oscillator

Optical Master Oscillator
Mode-locked laser

Link stabilization and distribution

Optical Fibre Cables

(100m - 3km)
Interfacing and Controls
Laser-laser lock Laser-laser lock Laser-laser lock
. Laser-RF lock
Photoinjector Seed Probe

Accelerating Laser Laser

Laser-RE lock | Laser

- J W L Undulator L%
ANANAANS
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Ultrastable clocks Science & Technology

Facilities Council

iD T v L B A AL B | v L | A |

What isn the most e - e piendrainslibartoy B
stable clock you can
gete

Allan Deviation

Accurate atomic clocks
Sr now holds the record on the Q and S5/N

- 10" I -4 S. Foreman,
10 i JILA
10 Ll TR | PR . PR, ST u
1 10 100 1000

8

Averaging time T [s]

4B

lock comb mods
o standard

Cb highly stable
microwanv e frequency

e
(=1
=

—
=

—=

N

L
. N ‘
; Single A7 | |
» Hg' il

Clock Uncertainty (ns/day)
Frequency Uncertainty

1850 1960 1870 1580 1880 2000

N8
NIST, USA
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Optical timing systems @ Science & Technology

Facilities Council

2 main approaches

{ Pulsed Distribution }

{ CW Distribution }
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Ultrastable clocks @ Science & Technology

Facilities Council

o E Some of the most stable
microwave and optical clocks

F Passively mode-locked lasers

Er-fibre MLL
—-120

2 r
N, o
= 2 3
% 10° % % . .
o P 0L 38 (MLL) are quieter at high
= -7 col : m = . .
5 1073 I, / RE cavity: 160 3 € frequencies than microwave
E 10°] TisamLL S eyl 150 8 oscillators
E N =40 . .
210" (b)ﬁa | 022 B Ti:Sa oscillators are some of the
. c .
= : . quietest clocks currently
K, R ojo %:E; available
1k 10k 100k ™ 10M £5
10°

Offset Frequency (Hz) L-140

—
:.
(&
ud .

E  Fibre lasers at tfelecommunications
wavelengths are partficularly suitable for

y
o
o

s

. ! W)
1020 1050 1080
Wavelength (nm) | _

—

Q
i

.

®
o
Equivalent SSB Phase Noise at

Timing Jitter Spectral Density (fs?/Hz)
1-GHz Carrier (dBc/Hz)

distribution ss
— Low loss b oL -solion " egge W {20
3 sSoL - stretched-pulse
— mafure components 10" &n' 220 3 5
— high bandwidth components N TR m———t0  ££

Frequency (Hz)
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Stretched-pulse fibre lasers @ Science & Technology

Facilities Council

» Only the intense peaks have the correct
polarisation to pass through the polariser

> Polarisation is VAN and continue to circulate
rotated to linear by A

the waveplates Noise and pedestal is rejected

»Q

» Pulsed operation starts from
random noise in gain
medium

>
14 A4 1
|_| |_| \lll:’olarisati;l/n |_|

polarization of intense
peaks, wings have
different polarisation

» After many cycles laser
converges to single pulse
steady state

JUUUL

» Polarisation rotation
IS intensity
dependent

> Gain_r_nedium further ) oW 980nm » A portion of the pulses are
amplifies peaks Pump tapped out

» Gain fi_bre _has _ ) > Repetition rate is determined
opposite dispersion A q, — O, — O, = |(By = B,) + Yl — 1,) + =y, — )| 2L by ring transit time
to main fibre | | | 3 |
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Ultrastable clocks @ Science & Technology

Facilities Council

(" phase detect 1"/ ["RF Reference Cavity length susceptible to low
[ and PID : Oscillator i i
(A ! frequency noise/drifts...
g »Fibre length changes are detected through
3 _ phase comparison to RF
Detect and filter
‘ »Feedback signal compensates for changes in
A A path length
QAT /\

Polarisation

ans but very low noise at high
ptics

frequencies

2201
_ 40-
N |
JJJk& E -60 EDFL locked to Bates MO
° 80 1 after 1000 m transmission
3 /
2 -100-
o ] Bates MO
& 1204
2.637... m cavity length -> 81,250,000 Hz S 1401
7} /
add 28 nm -> 81,250,001 Hz 9 g0 ] free-running EDFL
i _ after 1000m transmission

10° 10" 10° 10° 10° 10° 10° 10
Offset Frequency (Hz)
(Source: A. Winter, DESY)
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Pulsed timing systems @ Science & Technology

Facilities Council

Precision
<€— Microwave
Oscillator

Optical Master Oscillator
Mode-locked laser

Link stabilization and distribution

Optical Fibre Cables

(100m - 3km)
Interfacing and Controls
Laser-laser lock Laser-laser lock Laser-laser lock
. Laser-RF lock
Photoinjector Seed Probe

Accelerating Laser Laser

Laser-RE lock | Laser

- J W L Undulator L%
ANANAANS
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Pulsed distribution (k) science 8 Technalogy

Facilities Council

E ‘Undesirable’ effects in fibres:
— Chromatic dispersion
— Polarisation mode dispersion
— Fibre nonlinearities (specifically self-phase modulation)
— Temperature sensitivity
— Vibration sensitivity
— Radiation darkening

SMF-28e Dispersion Coefficient Versus Wavelength
1310 |

20

E Dispersion in opftical fibres 0

0

I (psf(km nm))

- 10

-2 '
”PJDD 1250 1300 1350 1400 1450 1500 1550 1600

(o)
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Dispersion in optical fibres @ Science & Technology

B Dispersion in opftical fibres:
— In standard fibre (SMF 28e*): p,= 21 ps2/km

2
L. = TL T = TrwHM  (1/e-point of Tiwnm = 100 fs; Ly = 17cm
b 155 | 07 5 JIn2 Gaussian)

T(2) =TO)1+(z/L, ) Tiwnm = 200 fs; L = 30cm

B Dispersion in waveguides is composed of two parts

1.31 ym Zero-Dispersion in Step-Index SM Fiber

+
Material Dispersion

g Zero at 1.28 pm Total Dispersion
2 \ /Zero at1.31 um

= 0

O oo

% ...............................................................

i Waveguide Dispersion "

Material dispersion Waveguide dispersion

1.2 pm 1.4 pm 1.6 pm
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Dispersion compensation @ Science & Technology

Facilities Council

E Combatting dispersion using Dispersion | | s
Compensating Fibre (DCF) % :
A ,d°n g 20 - “SMF+DCF
- (dlz g al El l'otal ink clispcr\iuu:)
£ al
5 __Ny(n=ny) , d*(vb) ;
W 2 ~
cA dv =
27a
V-number v :7(n12 -n;)"*
Normalized propagation nezfr — n22
constant b=-5—
n —n,
n Doye = 17 ps/nm/km
A Dpee = -135 ps/nm/km
= [ TN DCF P

Thin layer of cladding
with a depressed index

ber 2012, Caen




Polarisation mode dispersion @ Science & Technology

Facilities Council

E What is PMD?¢

» fiberis not perfectly symmetric, OupieReinile M%’
inhomogeneous. &

At = Pulse spread

* refractive index is not isotropic
* Polarisations will walk off from each JQM
other randomly ’

Input light pulse

B Solutions:

45°
rotation

a L
Partially
reflecting
Faraday Rotating mirror Polarization maintaining fibre
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Other efiects (o) gcmes g rcroton

1 Self-phgge Tom poral Pulte iaps of nput Tam poral Fultethaps of Cutput
modulation W
— Keep YOour peok T "7 A !
powers low! spsium ot ot fostam arcutt
E Radiation ] S
darkening ol ﬂ [\AJWWN\M/V\
— Commercial fibre ,m e i R ,m e e
g frm | s g frm |

E Temperature and vibration sensitivity
— Difficult to control or predict

— Compensaie
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Length stabilization (k) science & Technology

Facilities Council

E Estimate how much optical phase change you expect

dn 5.
A¢:2ﬂ(£ dL+dnjAT.|_ d—Tzl.lxlO °I°C
A\LdT dT ;
1 dL
~47.5x10%rad/'C Lar =>x0/c
[over Tkm: =11.7mm/C ] (Assuming your facility has this stability)

E How to detect and compensate for length changes?
F The ‘same return path’ assumption

Stable RE stable time here = stable time here
oscillator
@ / ﬁ
" \ 2

Y > Mirror oo
Mode-locked JUuL ( Error Delay N A \‘ Nl
fibre laser L detector line é D|str|but|on Fibre ; == e

J

Reference for
comparison
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Length Stablllzathn @ Science & Technology

Facilities Council

Stable RF oscillator Distribution and Stabilization
—>{ pp_ —
DCF .
- «—1 A Faraday Rotating
v i OA‘C > M 50:50 N
Mode-locked l‘u‘ UL Q — e : s [
fibre laser detector Free Fibre < Distribution | ‘ | “'\ | “'\ | ‘
space Stretcher “~  Fibre L
delay Output clock
hohn . signal
J_U_ Other links 8
E  Coarse delay (free space) 45°
Spool is stretched with rotation

provides enough range for max
expected drift:
eg. 390ps for Tkm facility with AT=5 deg.

piezo actuator

—

E Piezo wafer resonance > locking ki
bandwidth Partially
E 90° rotation at FRM cancels out i : reflecting
accumulated PMD in link (within
link bandwidth)
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Balanced optical cross-correlato@ Science & Technology

Facilities Council

B Overlap between the E  Dichroic mirrors select

reference and return out the SFG and from Balanced detection
signal pulse generate a the fundamental to
second harmonic signal enable double pass
in a Periodically-polled configuration.
KTIOPO, (PPKTP) crystal. _
4 ) cry dt \_/
<>
o group delay
Reference 1
pulse '

1
> 1
7 1

1

Return
signal )

between —)-
orthogonal
polarizations

dIChI’OIC mirro
_>,. reflecting fundamental

I dichroic mirror . o,
From —|L .To/.fmr.n o reflecting SHG (Type I1) < transmitting SHG
i > distribution transmitting fundamental
MLL link F. Loehl, DESY
=— A\/4 B PPKTP uses quasi-phase matching to B The type-ll is cut for phase matching
] : : . £ orth  bolarisati
Reference get high SHG conversion efficiency of orthogonal polarisations
E  The KTP isreverse polled when phaseE  Using type-Il eliminates the
mismatch between the pulses walks background signal associated with
off to 11, to maintain phase each pulse's own SHG and
matching. generates only the SFG generated

when overlapped
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Balanced optical cross-correlato@ Science & Technology

Facilities Council

E The difference signal between the
forward and backward SHG detectors et B
give an S-curve error signal with signal
respect to dt

E  Balanced configuration increases > dt
sensitivity and reduces amplitude Error signal
dependence of error signal. Balanced ,\

detection
Photodiode 1
signal

/

4
! - group delay

i between —) . .
Referenicel | == orthogonl B Error signal will be at
s i) “N\ [Tt zero crossing when the

Retur% % / d.ghmlcmf.rrod | pulses have perfect
; R _. reflecting fundamenta
signal dichroic mirror PPKTP <_ transmlt%lngSHG OVGHGD GT The EXIT Of

pulse reflecting SHG

L transmitting fundamental (Type ”) -I-h e P P KTP .
To/from

From —|I S
MLL ]EN e e . .
— \/4 distribution link

|
Reference
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Laser to RF locking @ Science & Technology

Facilities Council

Direct Clock Delivery

» The clock signal can be directly extracted T High speed
<> photodiode

from the optical signal by detection on a
photodiode and filtering. / \ ’ \ ' | ﬂﬁgr”(‘ﬁ*?s/?) ]— \/\/\/\
» Delivered clocks can be used to lock to RF Train of

components with phase detection short pulses
technique

» Potential errors in amplitude to phase 20

conversion Photodiode Signal
-30

-40

Short pulse delivery

» Generates high harmonics in high
speed photodiodes

-50

-60

» REF filter is used to extract desired
harmonic

RF power (dBm)

-70

» Using higher harmonic improves 0

locking resolution -90 - mEEEm !
0 0.5 1 15 2 2.5 3 35 4 45 5 55 6

Stable clocks signals can be delivered at Frequency (GHz)

harmonics far above the laser repetition rate
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Locking to other lasers @ Science & Technology

E Can modify balanced cross-correlator to lock 2 lasers at different

wavelengths
B SFG signal gives the overalp between the pulses

Eg. Locking Ti:Sa (800nm) to optical clock (1550nm) -> SFG at 527nm

—

L 2 '
I 1 -

f a I C I

n N O
, o

HR@EZ?.?nm é HT@52?.7HI‘T‘I
HR@800&1550nm

HT@ 800&1550nm
B Since BBO is not birefringent, the delay between the two pulses is

generated with a dispersive block.
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Timing Monitoring Sl & Nyogy

> Beam Arrival Monitor . Pickup characteristic
Scope N

From Modulator 515,

stabilized . N\ I Bos i B

| time measurements

link N U
1

00 T T T T T T T T T
-250 -200 -150 -100 -50 0 50 100 150 200 250

Delay (ps)
Beamline .
RF signal
RF pickup
> RF phase monitoring STV
splitter Regenef?t:eﬁ ;MFCRrowave
Scope s
From Modulator — ®
stabilize Q + N X
d link — l
Loop filter
Balanced

Optical pulse trains detector

repetition rate = Fr D
J‘
Vout o< Be

J.Kim, FLS12

LOpticaI phase detector
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Optical timing systems @ Science & Technology

Facilities Council

2 main approaches

{ Pulsed Distribution }

{ CW Distribution }

LA3NET School, 18th October 2012, Caen



CW timing systems

@ Science & Technology
Facilities Council

E Transmit CW laser instead of pulsed

CW Signal
Source

Measure relative forward/reverse phase t

Interferometrically stabilized transmission link

STHORNORVRVONORADRVRNAXONAORYE '

Optical fiber

Zs
%
_

0% reflective mirror

Compensate fiber length

Maintain constant number of optical wavelengths

B Detect delay in phase shift of optical carrier rather than pulse

E  Much higher sensitivity can be achieved:

— S-curve from cross-correlator has max
sensitivity 14.1 mV/fs for 100fs pulse

— Zero crossing of inteference fringes
has max sensitivity 1.21 V/fs at 1550nm

E Problems avoided — PMD, dispersion, SPM
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CW timin g SyStem S @ Science & Technology

Facilities Council

E Timing stability = Frequency stability
E Lock to a frequency standard.

receiver
transmitter Distribution '~~~ """ """"""77
CW | --—-------- o0 fibre ' !
laser [ /g\ E L— FS |+ FRM i > CW output
: FRM ! @ :_ - _‘} _________ I
! I
4 i_ 0.01C
Rb Uy
lock @ S? Demodulate
50 MHz R.Wilcox, FLS12

B New Challenge — Fringe counting, Fringe jumps!

B Divide down to lower frequency (but we’re optical, so have lots of
headroom to do this)

E Down-convert the phase information to a lower band
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CW timin g SyStem S @ Science & Technology

Facilities Council

E Optical frequencies much too high for accelerators to operate
on. Need clocking information in the RF range.

E Once fibre is stabilized, amplitude modulation required to
transmit clock frequency

receiver
transmitter Distribution [ """~ """ "7 77 7]
CW | ] oo fibre ! L AM
N OO0
laser [| AM | fé\ E — FS || FRM ——> output
' - AL T :
| i FRM |
Rb ' | o01c |
lock ORE - [ """
@ Sk Demodulate

R.Wilcox, FLS12
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Science & Technology
Facilities Council

We will stabilize group delay whiI@

measuring phase dela

BUT.... phase delay = group delay | ... NS
1.47 £ ”p .' de
. -%1.465 \-..______________
I Difference has been measured  : ——
to be 1.6% i
F Add this to the ‘feed forward’ .
receiver  mesanm
transmitter Distribution |
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Laser-to-Laser locking @ Science & Technology

Facilities Council

F Required for: Tl pas AR e g el
Shotoimoctor | R e T i
- o Olnjec oriaser 1012 . - Reeidus comb (AF, 10 GHz) G- Resdual comd [optical)
— Seed lasers S
©
— Pump-probe lasers >
. . D
— Diagnostics =
ks
<
E Can we take
18
OdVOnTOge Of 'I-he 10 y w IRy § PR Y . T .
1 10 100 1000
very best clockse Averaging time T [s]
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Optical frequency combs @ Science & Technology

Facilities Council

Time
Domain

Fourier
Transform

Frequency
Domain
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Laser-to-laser locking @ Science & Technology

Facilities Council

f f Lock two frequencies withir
master | . the frequency comb
clock I | separated by 5 THz.
transmitted frequency For a 1degree error in
e L 1 phasg detection, temporal
i f -f, S error is <0.6 fsec
f-f;~25 MHz % : R
synched | |
laser | |
fa fy (f1—£3) —(f2—f4) = error signal

Neither laser needs to be CEP stabilized
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CW timing systems @ Science & Technology

Facilities Council

. Precision
Optical Comb Microwave
Clock Oscillator

CW Link stabilization and distribution
Optical Fibre Cables

Frequency
Reference

(100m - 3km)
Interfacing and Controls
Laser-laser lock Laser-laser lock Laser-laser lock
. Laser-RF lock
Photoinjector Seed Probe

Accelerating Laser Laser

Laser-RE lock | Laser

- J W L Undulator L%
ANANAANS
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Hybrid system at Fermi @ Science & Technology

Facilities Council

RMO 6 OUT @15dBm
3GHz

t cw
l LASER

| ::;:E.g |-—-{ OMO |-+ OPTAMPLI -+ FO SFIiITTER |  CHILLER |
1-to-4

IETHH:* 1 Illll Ill l| + .
Tx3 TH4 TS TE6 oW
Eiﬁ::r : {iG"’} MﬂDUlLATtI-H
. Cw k. i
CW 32-channel
Master T 3GH=z AMPLIFIER
;L“;: &SPLITTER
| Rx1 || Rx2 | |Rx3| |Rxd4 | |Rxs| |Rxe|
:Ez ?—F:\Mﬁl—z PN LASER BAM BC1 BAM BC?2 EDS1
SEED LASER LUSER LASER
EVEMNT
=EN
3GHz
:::;1 SH2||5H3||5H='I |SHE||5I-IB |5H?||5T-IE
EVENT | —
RX \ LINK
| Rx1 | in“ﬁxa |F¢m||ﬁ:15| STAB1 lLs2| |Ls3] [Ls4| |'—55| |'-E“‘5 |L’57| LEE|
WrF || wrF || urF | wrF || LrF LLRF LLRF | LLRF || wrF || wrr || wRF | wrF || LLRF
13 50 s 8 10 11 12 1 CONTR1 a F] 5 B 7 a

Hz HzMAz Ky 10 Kiyl1 Kiy12 Kiy13 Kiy14  Kily1  Kly2 Kly3 Kly5 Kiy6 Kly7 Kiy8 Kiy9
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Hybrid system at Fermi @ Science & Technology

Facilities Council

' Amval Tlmejltter 74 fs avg

g X RF and PIL stablllty are m specsi
.*:l"- WL --"-...,.. k 3 Wl
. . w©
Mario. Ferianis, FEL 2011 =N
All-optical femtosecond timing system = |
for the Fermi@Elettra FEL & 4 : _' . i .
) 50 =9 0 ) |
# of shots
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Summ ary @ Science & Technology
Facilities Council

E RF timing schemes:
— Simple distribution, cost effective for small facilities
— Low resolution, very expensive for large facilities

I Pulsed fiming schemes:

— >5fs resolution, easy to infegrate, high bandwidth output,
commercially available

— >5fs resolution, scalability?

E CW timing schemes:
— Attosecond distribution, long distances
— Complex, costly, difficult to integrate

LA3NET School, 18th October 2012, Caen



Future R&D @ Science & Technology
Facilities Council
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@ Science & Technology
Facilities Council

Thanks for your attention!
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Commercial Systems @ R

Facilities Council

" —

Libera Syne ﬁ'.. .' -
40fs distribution
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