

Optical laser requirements, developments and simulations at the European XFEL

Max Lederer, Mikhail Pergament, Martin Kellert, Cruz Mendez*, Kai Kruse, Jin Wang, Gunnar Arisholm**

Laser Group, European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany *CLPU, Universidad de Salamanca, 37185 Villamayor de la Armuña, Spain

**Forsvarets Forskningsinstitutt (Norwegian Defence Research Establishment), PO Box 25, N-2007 Kjeller, Norway

A. The European XFEL project

B. Experimental laser requirements at XFEL

C. Pump-probe laser development and supporting simulations

A. The European XFEL project

EuropeanXFELWhy X-Ray Free-Electron Lasers?

Investigation of nano-scale ultrafast dynamic processes and highly excited states of matter require a "different kind of microscope".

Single pulse intensity > noise

⇒ X-Ray Free-Electron Laser sources open new scientific possibilities

Courtesy T. Tschentscher

XFEL Peak brilliance

EuropeanXFELAn X-Ray Free-Electron Laser

- Iow emittance high energy linac.
- SASE or seeded FEL process

XFEL SASE-process

Light generation in the undulator:

SASE - Self-Amplified Spontaneous Emission

April 10, 2009 LCLS: First Operative X-ray FEL

Figure 10: FEL x-rays at 1.5 Å on a YAG screen 50 m after the last inserted undulator (see Table 1 for measured parameters).

- New short-wavelength SASE record
- First spatially coherent hard x-rays
- Rep-rate: 60-120Hz

SASE process very robust at x-ray wavelengths.

What is the European XFEL adding in 2016?

- up to 5 beam lines (3 in base line)
- simultaneous operation
- 0.25 ... 24keV photon energy
- much higher pulse rate: up to 27000 pulses / sec

XFEL Some facts about the European XFEL Project

12 participating countries

DESY, Hamburg

- is host laboratory for the project team
- responsible for injector and linac

XFEL GmbH established in fall 2009

- Ourrently ca. 150 international staff, final staffing 230
- responsible for photon beam lines and experiments
- First beam: end of 2015

XFEL Laser Group established in Nov. 2010

→ currently 6 members, final staffing ca. 10 - 15

Courtesy T. Tschentscher

XFEL Technological challenges at European XFEL

18. 10. 2012, LA³NET workshop, GANIL, CAEN Max Lederer, European XFEL GmbH updated layout, Feb 2011 — Courtesy T. Tschentscher

XFEL European XFEL beam parameters

Parameter	Unit	
Photon energy	keV	0.27 – 24
Pulse energies (@saturation)	μJ	0.2 - ~4000
Pulse duration	fs	2 - 107
Power density	W/cm ²	~10 ¹³ - 10 ¹⁸
Spectral bandwidth		~ 10 ⁻³
Source size	μm	30 - 60 (100)
Coherence degree		0.4 - 0.96

18. 10. 2012, LA³NET workshop, GANIL, CAEN Max Lederer, European XFEL GmbH

Courtesy T. Tschentscher

15

XFEL The suite of instruments

B. Experimental laser requirements at XFEL

XFEL Ultrafast optical lasers at EUV- and X-FELs

Simplified schematic of a SASE Free-Electron Laser:

European

Experimental laser requirements analysis

Experiment Hall

SASE 2	HED + MID + NNN Types of lasers		
	PP IUNE IW SHOCK PW		
U1			
	currently not in use.		
U2			
SASE 1	SPB + FXE + NNN Types of lasers:		
	PP MAL TUNE		
SASE 3	SQS + SCS + NNN Types of lasers: PP MAL TUNE		

Types of lasers - a wish list.

(pump-probe):	(pump-probe):		
→ sub-15…100fs, 0.2mJ, 10Hz <i>burst</i> , 0…4.5MHz, 800nm			
MAL (molecular alignment):			
→ sub-20fs, 310mJ, 800nm ("kick") or			
→ 1J, 10Hz, ns ("adiabatic")			
<u>TUNE</u> (tunability, freq. conversion):			
\rightarrow UVmid-IR, THz (not in hutch, in coll. with instr. sci.)			
TW (Terawatt):			
→ <30fs, 5-10Hz, 100 Terawatt–class laser, Ti:sapphire			
SHOCK (high energy):			
→ kJ-class ns-laser	• Fixed		
PW (Petawatt):	• Future (potential		
→ 30fs, 1Hz, Ti:sapphire	User Consortium)		
or			
\rightarrow 150fs, 1Hz, diode-pumped Yb:CaF ₂			

European Some remarks on laser requirements

- **100TW-class** laser technology is mature and commercially available from several vendors.
 - Plan for installation in time with start of operation phase of the XFEL.EU.
- **PW- and kJ-class** lasers are also becoming commercially available and are being installed (e. g. BELLA Ti:sapphire 1.3PW).
 - Future of these efforts at XFEL.EU depends on external user consortium.
 - Due to the size of these lasers, an additional external building will be required.

PP-laser will require major development effort, no commercial system is available. high <u>flexibility</u> AND high <u>uptime</u>

- 10Hz burst operation with up to 4.5MHz intra-burst rep-rates.
- mJ-class pulse energies, shorter and longer pulses.
- Attempt to also achieve specs useful for MAL.
- Tunability will have to be derived from PP-laser and adapted to needs of instruments and users.
 - In cooperation with instruments scientists.

C. Pump-probe laser development and supporting simulations

XFEL European XFEL pulse timing

Electron bunch trains (with up to 2700 bunches à 20-1000 pC)

22

High-rep-rate operation (PP-mode):

- > 10Hz *burst*, 0.6% duty cycle,
- → 15 … 100fs,
- 1 ... 4.5MHz intra-burst, "PoD",
 - 1...0.2mJ per pulse, ca. 800nm

Low-rep-rate operation (MAL-mode):

- 10Hz *burst*, 0.6% duty cycle,
- 200kHz intra-burst, "PoD"
- sub-20fs, >3mJ per pulse, 800nm.
 - ps or ns, \approx 0.1J per pulse, 1030nm.

or

Options for high burst power ultrashort pulse generation

	Ti:Sapphire		OPCPA	
Operation mode	Cryo, staged multi-pass amps, ns-sync- pumped, burst		Non-collinear, staged single pass amps, ps- sync-pumped, burst	
Average power scaling	XFEL duty cycle is 1%, i. e. 10W, therefore no problem	\odot	No problem	\odot
15fs capable	borderline		yes	\odot
Gain per length	low	6	high	
Thermal transients	Cryo-management		negligible	3
Pump efficiency	≈ 20%		≈ 20%	
Flexibility	low	8	high	\odot
Misalignment sensitivity	medium		High angular and temporal	$\overline{\mathbf{S}}$

Require 5-10kW burst-power green ns/ps pump lasers for synchronous pumping in both cases.

Choose OPCPA in non-collinear configuration:

XFEL NOPA principle

NOPA ⇒**Non-collinear Optical Parametric Amplifier**

XFEL Pump-Probe laser conceptual layout

26

Burst-mode 1030nm CPA fibre front end

Requirements and options for a NOPA front-end

28

NOPA seed f hase, $\lambda \approx 800$ nm, $\Delta\lambda > 100$ nm, E > 1nJ

NOPA seed	Pros	Cons
Ultra-broadband TiSa oscillator, $\Delta\lambda \approx 300$ nm for 800nm and 1030nm	- "all-in-one" oscillator	- poor long-term stability
Standard TiSa oscillator, $\Delta\lambda \approx 100$ nm + fibre amp and Raman-Soliton in PCF for 1030nm	- only one oscillator	- complexity of Raman-Soliton setup
Yb-oscillator, 1030nm, $\Delta\lambda$ < 10nm + Standard TiSa, $\Delta\lambda \approx$ 100nm	- jitter only depends on TiSa	- uneconomical
Yb-oscillator, 1030nm, $\Delta\lambda$ < 10nm + supercontinuum in YAG, $\Delta\lambda$ ≈ 100nm	 one oscillator with proven longterm stability and low jitter efficient and economic 	 unknown, if jitter of compressed supercontinuum is worse than that of oscillator.

Pump amplifier seed	Pros	cons
Yb regenerative amplifier	 energy scaling at constant power is easy, moderate CPA 	 drift due to long length 4.5MHz switching
Yb rod-type-fibre amplifier	 envisaged energy scaling at constant power is easy no rep-rate limitation 	 bulk-like, not all-in-fibre need substantial CPA
Yb all-fibre amplifier	 high thermomechanical stability no rep-rate limitation 	 energy scaling at constant power is not straight forward, need substantial CPA.

European

All-fibre

Burst-mode 1030nm CPA fibre front-end

18. 10. 2012, LA³NET workshop, GANIL, CAEN Max Lederer, European XFEL GmbH

European

Burst-mode 1030nm CPA fibre front-end timing

European

XFEL Simulation of 1030nm CPA fibre front-end

Model: Generalized Nonlinear Schrödinger Equation

(e. g.: G. P. Agrawal, "Nonlinear fiber optics", (2007), AP)

x 10¹³

Compressor output

Typical case (long PCF, some gain narrowing):

FWHM = 307 fs-FWHM = 426fs **Compensated FOD:** 1.5 (a. u.) Pulsewidth: 307fs ÷ æi 4 ٩ AC-width: 426fs 3 0.5 -1000 0 1000 -1000 0 t (fs) 1000 t (fs) AC Compressor output x 10¹³ Compressor output <u>x</u> 10⁻⁹ -FWHM = 398fs -FWHM = 285fs 2.5 0.9 **Uncompensated FOD:** 0.8 2 0.7 Pulsewidth: 285fs Б (а. ц.) Р (а. 0.6 'n. ຜ່ 0.5 AC-width: 398fs 0.4 Suppr. SPM-satellites. 0.3 0.2 0.5 0.1 Similar to TOD: S. Zhou et al. 1000 -1000 1000 -1000 0 t (fs) t (fs) Opt. Expr. 13, 4869, (2005).

x 10⁻¹⁰ AC Compressor output

33

Limiting factors:

• SPM

European

- Gain narrowing
- Poor FOD control

Typical worst case (highest pulse energy):

34

18. 10. 2012, LA³NET workshop, GANIL, CAEN Max Lederer, European XFEL GmbH

European

Burst-mode 1030nm CPA power amplifier

Requirements and options for a burst-mode power amplifier

36

18. 10. 2012, LA³NET workshop, GANIL, CAEN Max Lederer, European XFEL GmbH

European

XFEL

XFEL The InnoSlab concept

• Multi-pass stabilized by therm. lens in fast axis.

37

- → constant beam size.
- No thermal lens in slow axis.
 - → increasing beam size.

Efficient extraction.

->

Intensity always around saturation.

2009 Prototype setup at ILT

XFEL Yb:YAG InnoSlab amplifiers: state of the art

- First 50W Nd:YVO₄ amplifier in 2000 by Fraunhofer ILT, Aachen ¹.
- First Yb:YAG picosecond amplifiers in 2007 by Fraunhofer ILT, Aachen ².
- <u>Current state of the art Yb:YAG InnoSlab amplifiers :</u>
 - >600W, ~600fs, 20MHz from a single amplifier module with multipasses.
 - 1100W total power or >500W power extraction (~600fs, 20MHz) from a booster amplifier with a single pass ³
 - ✓ 20mJ @ 2.25ns with 250W average power ⁴
 - ✓ non-saturated single pass gain >10 shown ⁵
 - ✓ Saturated gain approaching a value of 2 with a single pass power extraction of >40%
 - \checkmark damage threshold of the optics used exceeds 5J/cm² (@ 2,25ns)
- ¹ J. Giesekus et al, "High power diode end pumped slab MOPA system," CLEO, paper CThI3, (2001)
- ² P. Rußbüldt et al, "High Power Yb:YAG Innoslab fs-Amplifier", CLEO, paper CTuK5, (2008)
- ³ P. Rußbüldt et al, "Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier," Opt. Lett. 35, 4169-4171 (2010)
- ⁴ M. Schulz et al, "Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification," Opt. Lett. **36**, 2456-2458 (2011)
- ⁵ P. Russbueldt et al, "400W Yb:YAG Innoslab fs-Amplifier," Opt. Express **17**, 12230-12245 (2009)

European

InnoSlab 20kW Burst-mode booster feasibility study

AMPHOS GmbH (ILT spin-off) was commissioned to show feasibility of an Yb:YAG InnoSlab amplifier system with these core parameters:

Calculated effects include:

- Amplification (3D gain model)
- Thermally induced stress (3D thermo-mechanical FE-simulations)
- Thermal lensing (bulging and refractive), calculated and compared with known standard. \rightarrow
- Dynamic thermal lensing and path length variation during burst. \rightarrow
- → B-Integral

Design constraints:

- Beam quality limitations of the pump source
- ASE and parasitic lasing
- Cost and lifetime of pump diodes \rightarrow
- Complexity and cost of pumping optics
- Exchangeability of pump diodes
- Handling, availability and cost of laser crystals

Burst-rate: 10Hz

- Burst length: 200µs ... 1ms
- Burst av. Power: >20kW
 - Intra-burst: 100kHz or higher
- Pulse energy: 200mJ or lower
 - 1.5W / 2nm
 - Pulse duration: 500ps
- M^2

<1.5, round, smooth

Pin

Output:

- System design
- Cost estimation and timeline.
- Risk analysis

XFEL Gain simulations

- 3d intensity distribution (laser/pump) inside crystal
- in good areement with standard Amphos400

recursive calculation of steady state solution (quasi-three-level-scheme*):

$$\frac{1}{\alpha_p L} \frac{I_p}{I_p^{Sat}} \left(1 - \exp\left(\alpha_p \left(\beta - f_p\right)L\right)\right) + \frac{1}{\alpha_l L} \frac{I_l}{I_l^{Sat}} \left(1 - \exp\left(\alpha_l \left(\beta - f_l\right)L\right)\right) - \beta = 0$$

*Gilbert L. Bourdet "Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers", Applied Optics (2000)

- ANSYS Workbench Simulation
- Standard (Material-)Parameters:

- (transient) Temperature-Gradient for
 - thermal lens
 - Optical path length

$$\Delta L_{opt_total} = n_{YAG} \cdot \Delta z_{mech} + \frac{dn_{YAG}}{dT} \cdot \Delta T_{avg} \cdot L_{crystal}$$

 $f_{th} = \frac{r_{pump}^{2}}{2\frac{dn_{YAG}}{dT}L_{crystal}}\frac{1}{\Delta T}$

 $f_{mech} = \frac{r_{crystal}^2}{2(n_{VAC} - 1)\Delta z_{mech}}$

- Thermally induced stress for
 - Mechanically induced lens (bulging)
 - Fracture limit

(Tensile Stress for thermal fracture of YAG-<u>rod</u>: 120MPa-240MPa*)

*R. Weber, B. Neuenschwander, H. P. Weber, Thermal effects in solid-state laser materials, Optical Materials, Volume 11, Issues 2-3, January 1999, Pages 245-254

18. 10. 2012, LA³NET workshop, GANIL, CAEN Max Lederer, European XFEL GmbH

Quarter Crystal

XFEL Pump diodes and optics

Variation of the length of the thermal lens can be kept below 10% during this time window.

XFEL Simulation of booster output pulse shape

44

InnoSlab 20kW Burst-mode booster CAD

Shutter-box at output will include:

- Potential-free shutter: "Guillotine"
- Water-cooled beam dump
- Motorized attenuator
- Fast PD
- Average power
- Port for beam pointing measurement

Multi-stage NOPA

European **NOPA** basics

- Use non-collinearity with angle α between pump and signal to match the group velocity of signal and idler over larger bandwidth.
- Typical nonlinear materials: BBO, BIBO, LBO, KD*P

$$\vec{k} = \vec{k}_p - \vec{k}_s - \vec{k}_i$$

- 2. T. Wilhelm, J. Piel, E. Riedle: Opt. Lett. 22, 1494 (1997)
- 3. G. Cerullo, M. Nisoli, S. De Silvestri: Appl. Phys. Lett. 71, 3616 (1997)

J. Bromage et al, Vol. 19, Opt. Expr., 16797, (2011)

	NOPA crystal	Pros	Cons
\langle	BBO 1st stage in WC 2nd stage	 Large bandwidth High damage threshold High gain Medium apertures Medium residual absorption 	 Large walk-off Parasitic SHG of signal and idler in WC
	BiBO	- High gain	Somewhat restricted bandwidthMaterial quality is questionable
\langle	LBO 3rd + 4th stage	 Large bandwidth No parasitic SHG of signal and idler in WC Medium to large apertures Very low residual absorption Small walk-off 	 Low gain Somewhat lower damage threshold
	KD*P	Very large aperturesEconomical	Low gainHigh residual absorption

30 BBO, $\alpha = 2.6^{\circ}$ LBO, $\lambda = 810$ nm 25 --LBO, $\lambda = 780$ nm, $\phi = 16^{\circ} \alpha = 1.5^{\circ}$ Optimised for 810nm, $\theta = 24.7^{\circ}$ (pump internal **BBO** 20 angle), φ= 90° ∆k(cm⁻¹) α=2.6° 15 LBO, α=1.6° S-SHG, WC BBO, $\alpha = 2.6^{\circ}$ 963nm S-SHG, WC 861nm Optimised for 810nm 10 φ = 16.5° (pump internal LBO angle), $\theta = 90^{\circ}$ 5 α=1.6° 0 0,66 0,69 0,72 0,75 0,78 0,81 0,84 0,87 0,90 0,93 0,96 0,99 **XFEL** Multi-stage NOPA conceptual design

49

XFEL Dispersion and bandwidth management

- Use passive dispersion management : chirped mirrors (CMs)
- Limit amplified signal bandwidth to 15fs (transform limited)
- Pre-chirp continuum before amplification
 - → Stretcher is made from compensated CM-pair.
 - → Amount of chirp is chosen to amplify \approx 80nm by the \approx 800fs pump pulse.
- Compressor: bulk fused silica at experiment.
 - → Fused silica is dominating element.
 - → GDD / TOD ratio of BBO is similar to that of fused silica.
 - → Use CM-design optimised for GDD and TOD to be conjugate to fused silica.

Flexibility of scheme:

- → Bandwidth of CM-pair might support shorter pulses ⇒ reduce input chirp.
- For longer pulses ⇒ increase input chirp (≈ 15nm, i. e. 50fs compressed).

European Theoretical model of three wave mixing.

Time domain:

$$E(r,t) = \frac{1}{2} \sum \{ \boldsymbol{e}_{\boldsymbol{m}} A_{\boldsymbol{m}}(r,t) \exp[\boldsymbol{u} (\omega_{n0}t - \boldsymbol{k}_{\boldsymbol{m}}r)] + c.c. \}$$

m replaced by *s*, *p*, *i*, *ssh*, *ish*, the coupled equations in (*r*, *t*) space are : With

$$\widehat{M_{s}}A_{s} = i\sigma_{s}A_{i}^{*}A_{p} \exp(i\Delta kz) - i\sigma_{s}A_{s}^{*}A_{ssh} \exp(-i\Delta k_{ssh}z)$$

$$\widehat{M_{i}}A_{i} = i\sigma_{i}A_{s}^{*}A_{p} \exp(i\Delta kz) - i\sigma_{i}A_{i}^{*}A_{ish} \exp(-i\Delta k_{ish}z)$$

$$\widehat{M_{p}}A_{p} = -i\sigma_{p}A_{s}A_{i}exp(-i\Delta kz)$$

$$\widehat{M_{ssh}}A_{ssh} = i\sigma_{ssh}A_{s}^{2} \exp(i\Delta k_{ssh}z)$$

$$\widehat{M_{ish}}A_{ish} = i\sigma_{ish}A_{i}^{2} \exp(i\Delta k_{ish}z)$$
here
$$\widehat{M_{m}} = \frac{\partial}{\partial z} + \frac{\alpha_{m}}{2} + \rho_{m}\frac{\partial}{\partial x} + \frac{i}{2k_{m}}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right) + \frac{1}{\nu_{m}}\frac{\partial}{\partial t} + \frac{i}{2}\beta_{2m}\frac{\partial^{2}}{\partial t^{2}} + \cdots$$

Wł

α _m	absorption	$\rho_m = - 1/n(\vartheta)^* dn(\vartheta)/d\vartheta$	walk-off angle extra-ordinary wave,
v _m	goup velocity,	β_{2_m}	group velocity díspersion
$\sigma_n = \frac{\omega_n d_{eff}}{n_n c}$		Δk	phase mismatch at carrier frequencies

e. g. Dmitriev V.G., Gurzadyan G.G., Nikogosyan D.N. "Handbook of Nonlinear Optical Crystals". Springer, Berlin, 1997.

XFEL Theoretical model of three wave mixing.

Frequency domain:

$$E(r,\omega) = \frac{1}{2} \sum \{E_m(r,\omega) + c.c\}$$

With *m* replaced by *s*, *p*, *i*, *ssh*, *ish*, the coupled equations in (r, ω) space are:

$$\begin{aligned} \frac{\partial}{\partial z}E_{s} + \frac{\alpha_{s}}{2}E_{s} + \frac{i}{2k_{I}}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)E_{s} + ik_{s}E_{s} &= i\sigma_{s}\mathcal{F}\{E_{I}^{*}E_{P}\} - i\sigma_{s}\mathcal{F}\{E_{S}^{*}E_{SSH}\}\\ \frac{\partial}{\partial z}E_{I} + \frac{\alpha_{I}}{2}E_{I} + \frac{i}{2k_{I}}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)E_{I} + ik_{I}E_{I} &= i\sigma_{I}\mathcal{F}\{E_{S}^{*}E_{P}\} - i\sigma_{I}\mathcal{F}\{E_{I}^{*}E_{ISH}\}\\ \frac{\partial}{\partial z}E_{P} + \frac{\alpha_{P}}{2}E_{P} + \rho_{P}\frac{\partial}{\partial x}E_{P} + \frac{i}{2k_{P}}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)E_{P} + ik_{P}E_{P} &= -i\sigma_{P}\mathcal{F}\{E_{S}E_{I}\}\\ \frac{\partial}{\partial z}E_{SSH} + \frac{\alpha_{SSH}}{2}E_{SSH} + \rho_{SSH}\frac{\partial}{\partial x}E_{SSH} + \frac{i}{2k_{SSH}}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)E_{SSH} + ik_{SSH}E_{SSH} &= i\sigma_{SSH}\mathcal{F}\{E_{S}E_{S}\}\\ \frac{\partial}{\partial z}E_{ISH} + \frac{\alpha_{ISH}}{2}E_{ISH} + \rho_{ISH}\frac{\partial}{\partial x}E_{ISH} + \frac{i}{2k_{ISH}}\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)E_{ISH} + ik_{ISH}E_{ISH} &= i\sigma_{ISH}\mathcal{F}\{E_{I}E_{I}\}\end{aligned}$$

Where

 α_m absorption $\rho_m = -1/n(\vartheta) * dn(\vartheta)/d\vartheta$ walk-off angle extra-ordinary wave $\sigma_m = \frac{\omega_m d_{eff}}{n_m c}$ nonlinear coefficient $k_m = \frac{\omega_m n_m(\omega)}{c}$ propagation constante. g. J. Zheng, H. Zacharias, Appl. Phys. B 97, 765–779, (2009)2009) $\omega_m n_m(\omega)$ $\omega_m n_m(\omega)$

Fourier space Method

- Calculations:
 - linear and nonlinear parts in $\{\omega, k_n\}$ space by Runge Kutta 4th order
- Standard solving technique like4-order Runge Kutta
- S Calculations of all equation components at the same time (time consuming).
- Error scales with power ~5 with the step size

1. S. C. Sheng and A. E. Siegman, "Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction," Phys. Rev. A 21, 599606 (1980)

- Calculations:
 - linear parts analytical solution in $\{\omega, k_n\}$ space
 - nonlinear parts by Runge Kutta
 4th order in time domain

Standard solving technique like
4-order Runge Kutta
Evaluation of linear
propagation with FFT
Nonlinear differential for each
spatial element independent
Error scales with power ~2 with

2. G. P. Agrawal, "Nonlinear Fiber Optics (3rd ed.) Academic Press, San Diego (2001).

3. G. Arisholm, "General numerical methods for simulating second-order nonlinear interactions in birefringent media," 14, J. Opt. Soc. Am. B, 2543, (1997)

Split-step Method (1D + time)

BBO
Walk-off
compensation
scheme
Energy
Temporal

Spectral

Fourier space method (3D+time)

ar field

G. Arisholm, "General numerical methods for simulating second-order nonlinear interactions in birefringent media," **14**, J. Opt. Soc. Am. B, 2543, (1997)

Experiment: "Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers" J. Bromage et al, Vol. 19, Opt. Expr., 16797, (2011)

European

Planning

XFEL Major mile stones in pump-probe laser R&D

XFEL Conclusions

X-ray FELs for the soft and hard regimes have proven to show excellent beam properties. The European XFEL has started constructions and early experiments are scheduled for 2016.

•

FEL science has only just started. Experiments have exploratory character and fields have to be established. In the soft x-ray regime this process is in full swing. Hard x-ray experiments only started in 2010. Coming years will enable to establish new fields.

•

We are facing an exciting period of R&D at the highest level, including high power ultrafast laser development.

•

Due to the burst-mode emission pattern of the European XFEL and the pulse requirements, the pump-probe laser development faces unique challenges, both technological as well as time line.

Thank You!