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e How to estimate statistical bias of fit parameters
e Which method, likelihood function or 2, is better

e What's better: v2 with o = VA or that with o = VT

e Possible improvements of the yv> method
(bias reduction techniques)



likelihood function and

functions v~ and v~
Xow=v/N;; % on=/T

Frobability of experimental distribution to match theoretical model, given by
function f(x,t), can be written as
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Here we use Poisson distribution of events (counts) in histogram channels and
Stirling's formula for ;! We use following definitions:

e 1 is n'" channel of a histogram

o \, is number of events in the n* channel

e N =5 N, is total number of events in the histogram
e f(z,t) = f isa fit function

¢ = {Ii} is a vector of fit paremeters

o f(x,t,) is a fit function value for the n channel of histogram

Introduce log-likelihood function £ = —1n P
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Decompose 2L into series on powers of small value
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Introduce function , with 2 choices for o, :
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Fluctuations of fit parameters versus
fluctuations of NV,

As a result of statistical fluctuations in individual histogram chan-
nels, optimization of £ — >~ [ A In"=+ f — A\ ] gives vector

of “optimal’ fit parameters x, shifted with respect to the “true”
value &, by some Ax: * = =, + Ax. Elements of vector Ax can
be found from the £ optimization requirement dL/ox; = 0:
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and hence
fa’
Ar; = Z Z i, L(Ne— fo)|, where =
B n

Here we use:
o fi = ;—i (notation)
o f(@) = f(@et+A) ~ fu+ 30, £ A2, whete f, = f(@0, t)
o (N, —fo)=0
o (No—fo))=an=1f
o (N, —f.)N,—Ff.))=0forn#£m
From that we have:
o (Az,) =0, since (N,,— f.)=0
o« (Ar N — f)) = X5, (A1) £

By (...) we denote average over ensemble of similar measurements

(ensemble average)



Statistical bias of fit parameters
for log-likelihood function fit

For £ minimization in the next-to-leading approximation we have:
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We search for solution in form of successive approximations:

Ar; = Azl + .ﬂ\r} + ... Then for ..ﬂu:;-l we have equation:
ZHZ A 41 ZZ L AzS AL

AN ; 'ﬂ'ﬁ j
(R B (1o ko)
=] i k

- o 1 _ -1
which has solution: Ary =3 (A )ﬂ: X

lZZ - mane 3 3 Bk agan
+Z:Z: ur_maf E:Z:
ST % aga)

nafa°

1 _ _ i
(Ag) = =3 (A, (47, 2 7 #0
]

i3

For a single parameter fit:
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Estimates of bias of fit parameters for the fit
function G(t) = N,e ¥/"(1 + Acos(wt + ¢))

For analytical evaluations and numerical estimates we replace sums
by integrals: > (...) = bf ﬁ J(..)dt
where b is bin W|dth and N = ERNR ~ Yy fle,ty) = %f fdtis

total number of events in the histogram.
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where (t;naz+7)/b = Ngp ~ 3600 is the typical number of histogram
channels



Possible improvement of - fit

It's straight forward to verify that some linear combination of results
of x° and \- 7 fits, namely:

has same bias as the log-likelihood function fit.

o

Note that similar combination of functions x~ _ . and \~ _ -

gives :
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which coincides with decomposition of 2L in two lowest terms. T hat
gives a hint for possible improvement of \~ fit : one should use a
function which coincides with decomposition of 22 in two (or more)
lowest terms.

Examples:
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Direct calculations show that indeed y~ ., and " NET IR fits
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have same bias as the log-likelihood function fit.



Bias of w for muon g-2 experiment at BNL

Time distribution of high energy electrons (E > Eyp,) from muon decays:

G(t) = N, E—tﬁ'[l + A cos(wt + ¢)]
\/\ (rw)™ = 0.01
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For b= 0.15pus, A= 0.4 and N = 10° decay electrons:
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Suppose we have N = 107 events and want to
e split them into 1000 parts, N = 109 in each;
o fit these 1000 parts separately;
e find w as weighted average

then we'll have ~ 1 ppm bias, which is now comparable with statistical error

38 ppm x4/105/10% = 1.2 ppm.



