Construction of the lead glass calorimeter

Dezső Varga, KFKI, Budapest

- Placement, support structure
- Cabling, electronics
- LED pulsing and DAQ tests
- Forseen calibration
Placed on a 160 cm high concrete block, in a moveable support frame
Supply voltages and signal output

HV 1000V, 500V
LV +12V, −12V
LED pulsing

Lead glass block
(x₀ = 2.5 cm, 40–50 cm length)

Output signal on a twisted pair cable to the ADC and trigger unit

Area
Counting house
Cabling

Signal of 4 blocks on one STP cable

6 cables (24 channels) pulled in a bunch

Moveable support-frame
DAQ / ADC readout

- Fastbus ADC-s (inherited from OPAL) in the Buda-ToF crate
- Tested with internal pulser
- LED pulser test: all channels tested with final cabling (some cables repaired)

(figure from Ferenc’s lgc.tk display)

- Plan (idea from Sigi): run parasitically few days before the datataking, with In beam to get real particles in the wall (→ fine tuning of DAQ timing without using our beamtime)
Forseen calibration process

- No direct calibration with beam shot in the wall is forseen
- Primary calibration principle: π^0 mass
- Shifting by 1 and 2 blocks: relative calibration of blocks in the same row
- Gain monitoring and time dependence: LED pulser
Summary

- Hardware completed, tested and (basically) ready for datataking
- First particles expected in two days from now

Special thanks to Ferenc Siklér for developing very effective software background and András László (diploma student) for assistance in hardware setup and testing.