paper: System-size dependence of strangeness production in
nucleus-nucleus collisions at \(\sqrt{s} = 17.3 \) GeV

current draft: /afs/cern.ch/user/c/choehne/group/paper/size/draft8.ps

converged to rather brief and precise version:
 essential data: \(\pi^\pm, K^\pm, \phi, \Lambda \)
 essential arguments: understanding the effect as a superposition/convolution of
 - formation of coherent subsystems of increasing size
 - canonical strangeness enhancement

in addition (to be prepared): long paper
full statistics from VENUS events* (5000 events) for π-feeddown:
→ minor changes (< 1%), see e.g π^- in SiSi:

old

$\langle \pi^- \rangle = 57.8$

$\sigma_y = 1.06$

$y_\Delta = 0.89$

* thanks to Michael Mitrovski

new

$\langle \pi^- \rangle = 57.6$

$\sigma_y = 1.05$

$y_\Delta = 0.89$
proposal for long paper:

data: $\bar{\Lambda}$

compare to $\pi^\pm, K^\pm, \phi, \Lambda$

discussion: $\pi/N_{\text{wound}} \rightarrow$ increase of entropy

T vs mass \rightarrow transverse flow
4π and/or midrapidity ratios of K^+/K^- and Λ/Λ

→ discussion of baryon density, stopping possible consequence for strangeness production?

comparison of models to data?