

1

Measurement of electrons from heavy flavour decays in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with ALICE

Shingo Sakai for the ALICE collaboration Lawrence Berkeley National Laboratory

Outline

- Introduction
- Electron identification
- pp results
 - Heavy flavour decay electron cross section at $\sqrt{s} = 2.76 \text{ TeV}$ & 7 TeV
 - Beauty decay electron cross section at $\sqrt{s} = 2.76 \text{ TeV}$ & 7 TeV
- Pb-Pb results
 - Nuclear modification factor (R_{AA})
 - Azimuthal anisotropy (v₂)

Summary

Introduction

- Heavy quarks in heavy-ion collisions
 - Created in the initial parton-parton scatterings
 - Traverse and interact with the hot and dense QCD matter
- Nuclear modification factor (R_{AA})
 - Sensitive to parton energy loss within the QCD matter
 - Sensitive to colour charge and mass dependence
- Azimuthal anisotropy in non-central collisions
 - Sensitive to parton-QCD matter interactions and thermalization

Charm & Beauty Energy Loss

- Theoretical prediction : $R_{AA}^{charm} < R_{AA}^{beauty}$
- See e.g. "Last call for LHC predictions" arXiv:0711.0974
 - Radiative energy loss (dead cone effect): PLB 632, 81
 - Collisional dissociation: PLB 649, 139
 - Large elastic scattering cross section associated with resonance states of D & B mesons in QGP: PRC 73, 034913

Azimuthal anisotropy

Elliptic flow

 $dN/d\phi \propto N_0(1+2v_2\cos(2\phi))$

 Transfer initial spatial anisotropy to momentum space anisotropy
 macroscopic: hydro model
 => pressure gradient
 microscopic
 => scattering in the medium
 Heavy flavour flow
 indicate strongly coupling
 & quark level thermalization
 Path-length dependence of energy loss at high PT

Heavy flavour production cross section at LHC

Expected in I PbPb collisions at √s_{NN} = 2.76 TeV
 Charm (cc) = 60, Bottom (bb) = 2

Large heavy flavour production cross section

Heavy flavour study via electrons

- Signal Electrons:
 - From semileptonic decays of charm & beauty hadrons
- Background Electrons:
 - From photon conversions
 - From Dalitz decays of neutral mesons
 - From quarkonia decays

Branching Ratios:	
$c \rightarrow e + X$	<i>(</i> 9.6%)
$b \rightarrow e + X$	<i>O</i> (11%)
$b \rightarrow c \rightarrow e + X$	<i>(</i> 10%)

- Background subtraction
 - Cocktail method
 - Background calculated using measured hadron production cross section
 - Invariant mass method electrons from 'photonic' sources
 - Reconstruction of electron pairs from the decays of neutral mesons & photon conversions
 - Heavy Flavour decay Electrons (HFE) dN/dp_T obtained via subtraction of the background from the inclusive electron spectrum

Electron identification in ALICE

- TPC --- measures dE/dx
- TOF --- measures time of flight
- TRD --- measures transition radiation (only in pp collisions now)
- EMCal --- measures energy trigger (single shower)
- ITS --- reconstruct photon conversions charm & beauty separation with impact parameter (done in pp for now)

Beauty decay electron separation - Impact parameter method

- Separation based on displacement from primary vertex
 - Preferential selection via their large impact parameter (d₀)
 - $c \tau \sim 500 \,\mu$ m for B hadron
 - |d₀|>250 µ m (p_T ~ 2.5 GeV/c)
 (p_T dependent cut)
 - ITS ; impact parameter resolution < 75 μ m for p_T >I GeV/c
- Remaining backgrounds estimated based on measured π^0 , $\eta \& D$

Beauty decay electron separation - b-tag method

Pairing electron with associated hadron from B decay

- Cone radius: hadron should be in a certain cone size
- Pair DCA: close to electron candidate
- SignDCA: secondary vertex have a certain sign distance from the primary vertex
- Invariant mass: B mass > background mass (D, π⁰ etc)

pp results

• Heavy flavour decay electron cross section at $\sqrt{s} = 2.76 \text{ TeV} \& 7 \text{ TeV}$

- 7 TeV: L_{int} = 2.6 nb⁻¹ (MB),
 - ▶ arXiv: 1205.5423 (accepted PRD)
- > 2.76 TeV: $L_{int} = 0.5 \text{ nb}^{-1}$ (MB), $L_{int} = 11.9 \text{ nb}^{-1}$ (EMCal trigger)

• Cross section of beauty decay electron at $\sqrt{s} = 2.76 \text{ TeV} \& 7 \text{ TeV}$

► 7 TeV

- L_{int} = 2.2 nb⁻¹ (MB): Impact parameter method
 arXiv: 1208.1902 (submitted PLB)
- L_{int} = 210 nb⁻¹ (EMCal trigger): b-tag method
- 2.76 TeV: L_{int} = 0.5 nb⁻¹ (MB), L_{int} = 11.9 nb⁻¹ (EMCal trigger)

* MB : minimum-bias trigger

HFE production cross section in pp collisions at $\sqrt{s} = 2.76$ and 7 TeV

Beauty decay electron cross section in pp collisions at $\sqrt{s} = 7$ TeV

- Beauty decay electron cross section $1 < p_T < 8 \text{ GeV/c}$ Impact parameter arXiv: I208.I902(submitted PLB) $8 < p_T < I3 \text{ GeV/c}$ b tagFONLL pQCD calculation
- FOILL pQCD calculation agrees well with the measured beauty cross section

Pb-Pb results

- ► HFE R_{AA}
 - Centrality 0-10 %
 - I7 M events (MB) & 0.7 M events (EMCAL trigger)
 - ▶ $3 < p_T < 18 \text{ GeV/}c$, $|\eta| < 0.6$
 - Background estimate : Invariant mass method
- ► HFE v₂
 - Centrality 20-40 %
 - > 3M (2010) + 8.5 M (2011) events (MB) & 1.3 M events (EMCAL trigger)
 - $1.5 < p_T < 13 \text{ GeV/}c, |\eta| < 0.7$
 - Background estimate : Cocktail method
- Centrality & Event Plane determination
 - > VZERO (2.8< η <5.1, -3.7< η <-1.7) scintillators signal amplitude

HFE dN/d p_T in 0-10% central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

HFE R_{AA} in 0-10% central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

 $R_{\rm AA}(p_{\rm T}) = \frac{d N_{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA} \rangle \times d\sigma_{\rm pr}/dp_{\rm T}}$

 T_{AA} : the nuclear thickness function

- - FONLL calculation for 2.76 TeV
- heavy flavour decay electrons w.r.t. scaled pp references up to $p_{T} = 18 \text{ GeV/c}$

ALI-PREL-31917

17

Azimuthal anisotropy of electrons

- Elliptic flow (v₂) ; dN/d(ϕ - ψ) = N (I + 2v₂^{obs}cos(2(ϕ - ψ _{EP})))
- Event plane determined with the VZERO detectors (2.8< η <5.1, -3.7< η <-1.7)
- HFE v_2 obtained by subtraction of the background electron v_2 :

$$v_{2}^{HFE} = \frac{(1+R)v_{2}^{inclusive} - v_{2}^{background}}{R}, \quad R = \frac{N_{HFE}}{N_{background}}$$

Background electron v_2 – cocktail method

- Background v₂: decay electrons from neutral meson & converted photons;
 - calculated from parent v_2 and p_T spectrum
 - Assume : $\pi^0 = \pi^+$, m_T scaling for η , direct $\gamma v_2 = 0$

Heavy flavour decay electron v_2

20

Comparison with 200 GeV Au-Au collisions at RHIC (PHENIX |y|<0.35)

Magnitude of R_{AA} (3<p_T<9 GeV/c) and v₂ (1.5<p_T<4 GeV/c) comparable at the two energies</p>

Comparison with models

- BAMPS⁽¹⁾ model : HQ transport with collisional energy loss in expanding QGP
 - \blacksquare Seems to underpredict HFE R_{AA} , consistent with HFE v_2
- Rapp⁽²⁾: heavy quarks transport with in-medium resonance scattering and coalescence
 - \blacksquare Consistent with HFE R_{AA} , seems to underestimate HFE v_2
- POWLANG⁽³⁾: Heavy quark transport (Langevin eq.) with collisional energy loss
 - \blacksquare Seems to underpredict HFE R_{AA} and to underestimate HFE v_2 at high p_T

²² (1) J. Uphoff et al. arXiv 1205.4945 (2)R. Rapp et al. arXiv 1208.0256 (3)A. Beraudo et al J.Phys.G G38 124144

Summary

- Heavy flavour decay electrons & B decay electrons production cross sections are well described by FONLL pQCD calculations (pp 2.76 TeV & 7 TeV)
- Strong suppression of the HFE yield up to 18 GeV/c in 0-10% most central events (R_{AA} ~ 0.4)
 - Clear indication for substantial energy loss of heavy quarks in the hot and dense medium
- Non-zero HFE v₂ observed in 20-40% central events:
 - Suggests strong re-interactions within the medium
- P-Pb run in January to measure initial state effects