

The 4th Asian Triangle Heavy Ion Conference (ATHIC2012) in Pusan, South Korea on November 14-17, 2012

Application of AdS/CFT potential on the meson mass using two-body Dirac equations

Byeong-Noh Kim Dept. of Physics, Inha University Under the Advice of Professor Jin-Hee Yoon

Introduction

In heavy ion collisions

- Quark-Gluon-Plasma
- Dissociation temperature of quarkonia
- For Anti-de Sitter space-time
 - The potential in a function of the temperature
 - [Boschi-Filho, Braga & Ferreira, PRD 74, 086001 (2006)]

Inha Nuclear Theory Group

Introduction

- The final target
 - the thermal properties of QGP by using AdS/CFT correspondence
- In this stage
 - Check validity of the AdS/CFT potential for quarkonia systems
 - Implied 2-body Dirac-eq. to find mass spectrum of $Q\bar{Q}$ systems

- 2 free spinless particles with the mass-shell constraint
 - $H_i = p_i^2 + m_i^2 \approx 0$
 - *m* depends only on the space separation perpendicular to the total 4-momentum
- 2 free spin-1/2 particles with the generalized mass-shell constraint
 - $H_i = p_i^2 + \tilde{m}_i^2 = p_i^2 + m_i^2 + \Phi_i(x, p_1, p_2) \approx 0$
 - potential depends on the space like separation only & the components of *p* perpendicular to the total 4-momentum

[P. van Alstine & H. Crater, J.Math.Phys.23(9), 1982]

Pauli reduction[Salpeter, PR 87, 328 (1952)]
 + scale transformation

[Schwinger, "Particles, Sources, and Fields", Vol2, pp. 348] • 16-comp. Dirac Eq.

 \rightarrow 4-comp. rel. Schrödinger-type Eq.

•
$$H = \frac{\varepsilon_1 H_1 + \varepsilon_2 H_2}{\omega} = p^2 + \Phi_{\omega}(\sigma_1, \sigma_2, p_{\perp}, A(r), S(r))$$

= $b^2(\omega)$

• where $b^2(\omega) = \varepsilon_{\omega}^2 - m_{\omega}^2$ with $\varepsilon_{\omega} = \frac{\omega^2 - m_1^2 - m_2^2}{2\omega}$ and $m_{\omega} = \frac{m_1 m_2}{\omega}$ [Crater, Becker, Wong & vanAlstine, PRD 46, 5117 (1992)]

Inha Nuclear Theory Group

- Φ_{ω} = central potentials + darwin + SO + SS + Tensor + etc.
 - $\Phi_{\omega} = 2m_{\omega}S + S^2 + 2\varepsilon_{\omega}A A^2 + \Phi_D + \mathbf{L} \cdot (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2)\Phi_{SO} + \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \Phi_{SS} + (3\boldsymbol{\sigma}_1 \cdot \hat{r}\boldsymbol{\sigma}_2 \cdot \hat{r} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)\Phi_T + \boldsymbol{\sigma}_1 \cdot \hat{r}\boldsymbol{\sigma}_2 \cdot \hat{r}\mathbf{L} \cdot (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2)\Phi_{SOT} + \mathbf{L} \cdot (\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2)\Phi_{SOD} + i\mathbf{L} \cdot \boldsymbol{\sigma}_1 \times \boldsymbol{\sigma}_2\Phi_{SOX}$
- For singlet state with the same mass,
 - no spin-orbit, spin-orbit-tensor contribution
 - Darwin, spin-spin, tensor terms are altogether vanishes.
 - $H = p^2 + 2m_\omega S + S^2 + 2\varepsilon_\omega A A^2$

[Crater, Yoon & Wong, PRD, 79, 034011(2009)]

Inha Nuclear Theory Group

For S-state,

- $(-\frac{d^2}{dr^2} + 2m_{\omega}S + S^2 + 2\varepsilon_{\omega}A A^2 + \Phi_D 3\Phi_{SS})v_0 = b^2v_0$
- For mixture of S & D-states,

•
$$\left(-\frac{d^2}{dr^2} + 2m_{\omega}S + S^2 + 2\varepsilon_{\omega}A - A^2 + \Phi_D + \Phi_{SS}\right)u_+ + \frac{2\sqrt{2}}{3}(3\Phi_T - 6\Phi_{SOT})u_- = b^2u_+$$

• $\left(-\frac{d^2}{dr^2} + \frac{6}{r^2} + 2m_{\omega}S + S^2 + 2\varepsilon_{\omega}A - A^2 + \Phi_D - 6\Phi_{SO} + \Phi_{SS} - 2\Phi_T + 2\Phi_{SOT}\right)u_- + \frac{2\sqrt{2}}{3}(3\Phi_T)u_+ = b^2u_-$

Inha Nuclear Theory Group

Advantage of 2-body Dirac constraints

- Already tested in e⁺e⁻ binding system(QED) [Todorov, PRD 3, 2351 (1971)]
- Already tested in quark system(QCD) [Crater, Yoon & Wong, PRD 79, 034011 (2009)]
- 16-comp. dynamics \rightarrow

4-comp. dynamics

- Leads to simple Schrödinger-type equation.
- Particles interacts through scalar and vector interactions.
- Spin-dependence is determined naturally.

Comparing Two Types of Potentials

 Simple QCD based model [Crater, Yoon & Wong, PRD79, 034011 (2009)]

•
$$V_{CYW}(r) = \frac{8\pi\Lambda^2 r}{27} - \frac{16\pi}{27r\ln(Ke^2 + B/(\Lambda r)^2)}$$

- From Richardson Potential which satisfies asymptotic freedom
- Λ , *K*, *B* are parameters.

Inha Nuclear Theory Group

Comparing Two Types of Potentials

AdS/CFT Potential

[Andreev & Zakharov, PRD74, 025023(2006)]

Comparing Two Types of Potentials

CYW Potential

AdS/CFT Potential

Comparing Two Type of Potentials

Inha Nuclear Theory Group

Results

CYW potential parameters	Commonly used masses	AdS/CFT potential parameters
$\Lambda = 0.4218 \text{ GeV}$		c = 0.323
B = 0.05081		$A: S \approx 1:9$
K = 4.198		
$m_c = 1.476 \text{ GeV}$	$m_c = 1.18 \sim 1.34 \text{ GeV}$	$m_c = 1.346$ GeV
$m_b=4.844~{ m GeV}$	$m_b = 4.13{\sim}4.37~{ m GeV}$	$m_b=4.747~{ m GeV}$

Inha Nuclear Theory Group

Results

Meson	Exp. (GeV)	CYW (GeV)	ExpQCD (GeV)	AdS/CFT (GeV)	ExpAdS (GeV)
$\eta_c: c\overline{c} 1^1 S_0$	2.980	2.978	0.002	2.981	-0.001
J/ψ : $c\overline{c}1^3S_1$	3.097	3.140	-0.043	2.992	0.105
$B_c^{-}: b\overline{c}1^1S_0$	6.276	6.276	0.000	6.254	0.022
η_b : $b\overline{b}1^1S_0$	9.389	9.345	0.044	9.390	-0.001
Υ: <i>bb</i> 1 ³ S ₁	9.460	9.484	-0.024	9.396	0.064

Inha Nuclear Theory Group

Summary

- Using Dirac's relativistic constraints, Two-Body Dirac Equations successfully leads to the relativistic Schrödinger-type Equation.
- AdS/CFT potential is used for $Q\bar{Q}$ -systems
- Applying the weighting factor to the scalar & vector potential
- Similar result on the mass spectrum of meson
- quark masses are close to the commonly used

Work on process & Future Work

- $1^1S_0, 1^3S_1 \rightarrow n^{2S+1}L_J$
- Introduce quarkantiquark potential at finite temperature
- By using the AdS/CFT potential, the properties of heavy meson systems will be investigated.

Inha Nuclear Theory Group