Searches for Exotic Particles and Phenomena at RHIC

Huan Zhong Huang

黄焕中

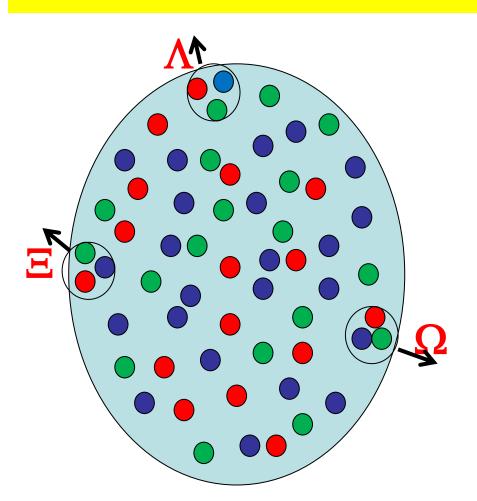
Department of Physics and Astronomy
University of California
Los Angeles, CA 90095-1547

ATHIC Conference Nov 14-17, 2012 @ Pusan, Korea

Outline

- 1) RHIC as an Exotic Particle Factory
- 2) Exotic Di-Hyperons

 $\Omega\Omega$


ΞΞ

ΛΛ

Hyperon-Hyperon Interactions

- -- precise determination of Lambda-Lambda Lambda-Cascade interactions
- -- is there an H particle? Definitive answer?!
- 3) QCD topological excitations/Local Parity Violation?

An Equilibrated Partonic System

Volcanic mediate p_T – Spatter (clumps)

Cluster formation is a common phenomenon for matters at high temperature and density!

Searches for Exotics Beyond 2q and 3q Structure

- RHIC a unique hyperon factory
 - -- possibly an exotic particle generator

Resonance Particles are difficult in HIC @RHIIC

-- huge combinatorial background!

Pentaguark candidates to search for

```
-- pKs
```

-- $\Omega\pi$ or ΩK

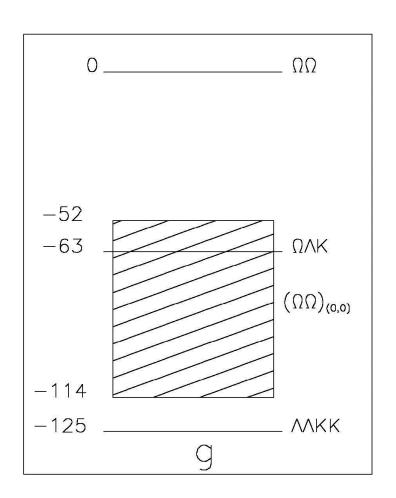
Di-baryons

```
\Lambda-\Lambda correlation and/or H particle [\Xi^0-p]-\to\Lambdap [\Omega-\Omega]
```

Hyperon Production Rate

Central Au+Au Collision (0-5%) dn/dy @ mid-rapidity

$$\Lambda - 16.7 \pm 0.2 \pm 1.1$$
 $\overline{\Lambda} - 12.7 \pm 0.2 \pm 0.9$
 $\Xi^{-} - 2.17 \pm 0.06 \pm 0.19$
 $\overline{\Xi}^{+} - 1.83 \pm 0.05 \pm 0.20$
 $\Omega + \overline{\Omega} - 0.53 \pm 0.04 \pm 0.04$


An $\Omega\Omega$ State ?

Z.Y. Zhang, Y.W. Yu et al

 $\Omega\Omega$ state is the most bound state!

The production venue: heavy ion collisions

Production rate?

EE Bound State

Nucleon-Nucleon

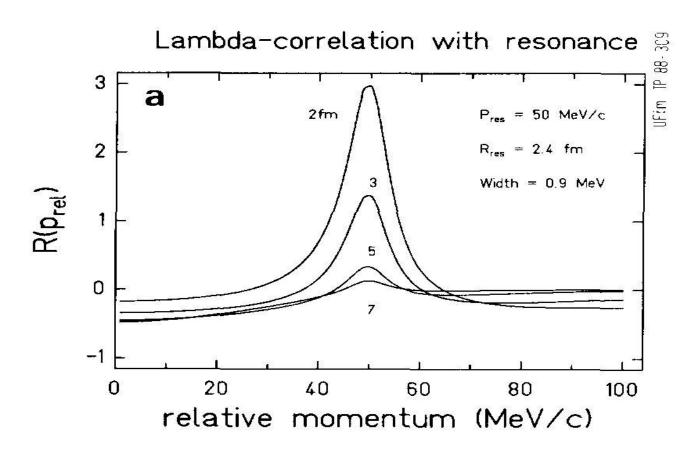
Hyperon-Hyperon

p-p - resonance coulomb repulsive

EE state

p-n -- bound state deuteron

n-n - unbound state


Physics Information in Correlation Function

Λ - Λ Correlation Function: both Λ s from the primary vertex – if there is a $\Lambda\Lambda$ resonance state -- enhanced peak at resonance and attractive $\Lambda - \Lambda$ interactions if there is a bound state H, then two As near threshold can form H -- depletion of Λ - Λ correlations (WRT a reference?!) (if we can measure p-n correlation, the effect of deuteron formation) both As from secondary vertices – weak decay product $- [\Xi - \Lambda]$ state?

H^0 in Λ - Λ Correlations

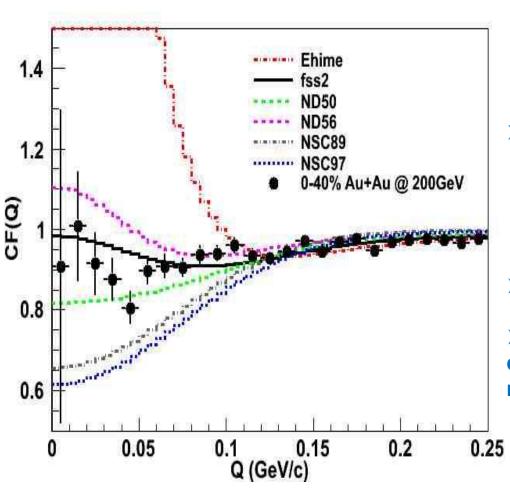
Influence of possible low energy resonance on Λ - Λ correlations.

Greiner and Muller, Phys Lett B 219 (1989) 199

A wide resonance will be difficult to observe!

Correlation Function and Direct Decay Searches Complementary

Correlation Function – Depletion of phase space due to bound state formation

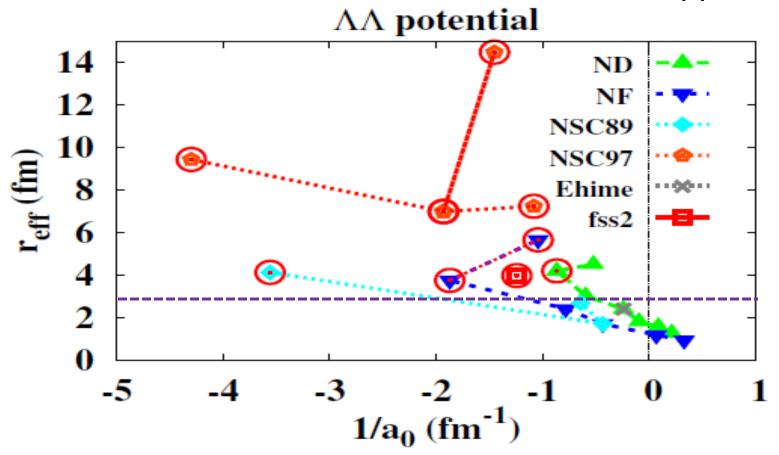

-- inclusive, sensitive to total yield

Direct Searches

-- depend on branching ratio

If H(uuddss) is a weakly bound state with a binding energy ~ 10s MeV as predicted by recent Lattice QCD calculations, H→Λ+p+π branching ratio?

AA Correlation Function



Not very Strong Correlation

- > Type of ΛΛ interaction:
 - Meson exchange models: Nijmegen model D, F, Soft Core (89, 97)
 - Quark cluster model interaction: fss2
 - Phenomenological model: Ehime
- $\triangleright \wedge \wedge$ interaction \rightarrow Attractive
- \succ Inclusive $\Lambda\Lambda$ correlations: Feed down contributions included in theoretical models.

Theoretical Model Fit to Data

A. Ohnishi, HHI workshop proceedings 2012

- Scattering length (a₀) is negative
- Current fit from different potential models to data gives indication towards non-existence of bound H-dibaryon
- \triangleright Large uncertainty in Σ and other hyperon feeddown contributions

Heavy Ion Collisions versus Kaon Beam Facility

Hyperon-hyperon interaction:

```
kaon beam facility – difficult to go beyond Λ-Λ Ξ-N systems
```

 Ξ - Λ

E-E

 Ξ - Ω

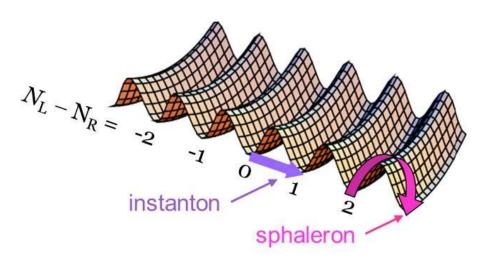
 Ω - Ω systems possible candidates

$$\Box [\Sigma^{+} p] \rightarrow p + p,$$

$$\Box [\Xi^{0} p] \rightarrow p + \Lambda,$$

$$\Box [\Xi^{0} \Lambda] \rightarrow p + \Xi^{-}, \Lambda + \Lambda$$

$$\Box [\Xi^{0} \Xi^{-}] \rightarrow \Xi^{-} + \Lambda,$$


J. Schaffner-Bielich et al (H-H); G. Miller (Ξ-Ξ); Z.Y. Zhang et al (Ω - Ω)

QCD – Fundamental Corner Stone of the Standard Model


QCD and QCD Vacuum

very rich underlying dynamical structure !!
 many intriguing features – (not really exotic)
 chiral symmetries
 topological vacuum excitations

a) Energy of gluon field

b) Chiral magnetic effect ⇒ event EDM

QCD Exotic Dynamic Phenomenon

plane

(defines Ψ_p)

QCD Vacuum Sphaleron excitation Reaction coupled to strong magnetic field from spectator protons

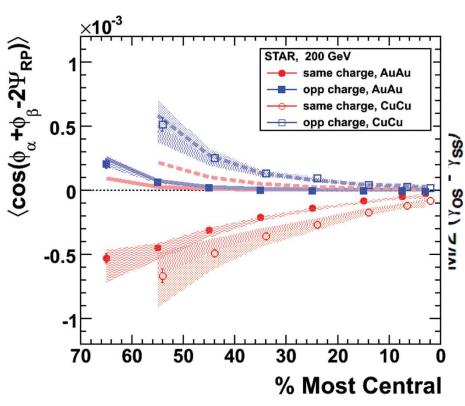
-- charge separation across the reaction plane

parity violating in strong interaction

Local Parity Violation

Kharzeev et al NP A803, 227 (2008)

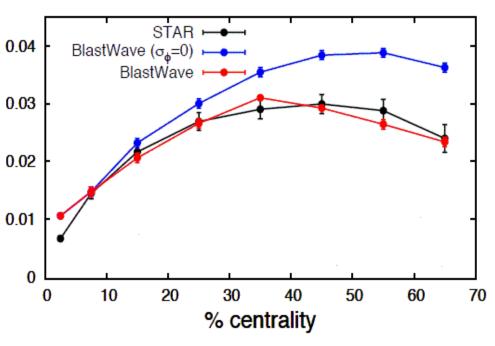
$$\begin{split} \gamma &= \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - \psi_{RP}) \right\rangle \\ &= \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{in} \right] - \left[\left\langle a_{\alpha} a_{\beta} \right\rangle + B_{out} \right] \\ &\quad \text{Voloshin, PRC70, 057901 (2004)} \end{split}$$


charge dependent – same sign (++,--) and opposite sign(+-, -+) sensitive to charge separation 15

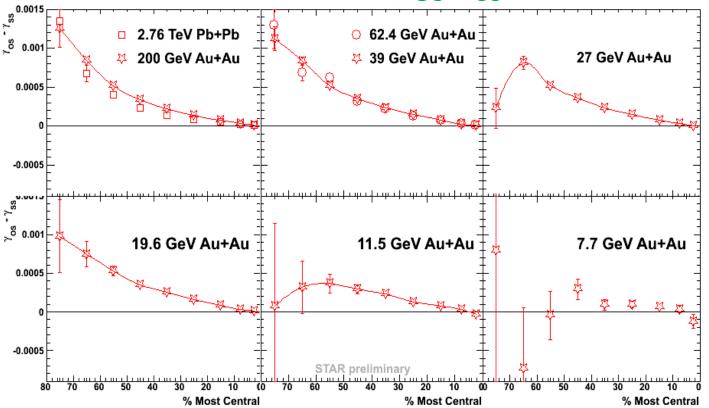
The Interpretation is not Unique

Empirically, indeed there is RP-dependnt Charge Separation!

STAR Phys. Rev. Lett.103: 251601 (2009)


$$\begin{split} \gamma &= \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - \psi_{RP}) \right\rangle \\ &= \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + B_{in} \right] - \left[\left\langle a_{\alpha} a_{\beta} \right\rangle + B_{out} \right] \end{split}$$

Can it be due to a special coupling Between charge balance function and v2?

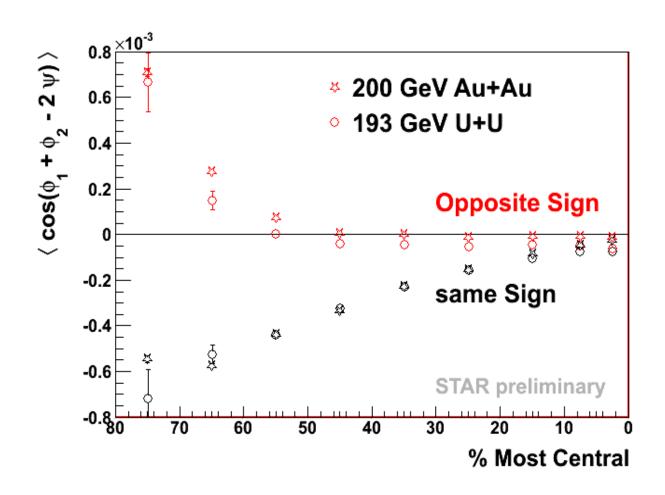

Phys.Rev.C83:014913,2011

 $(\gamma_{OS}-\gamma_{SS})$ Scaled by Npart

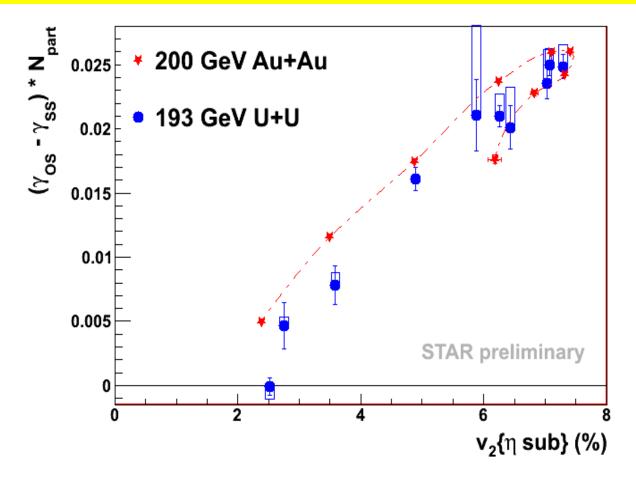
Beam Energy Scan Data

The disappearance of $(\gamma_{OS} - \gamma_{SS})$ at 7.7 GeV

Why? -- no QGP formation at 7.7 GeV?

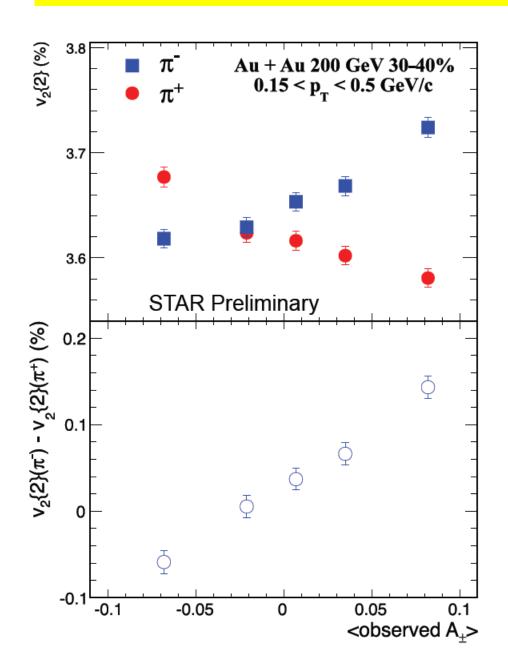

Ingredients in Scott Pratt's model –

charge balance function and


v2 induced RP dependence on balance function

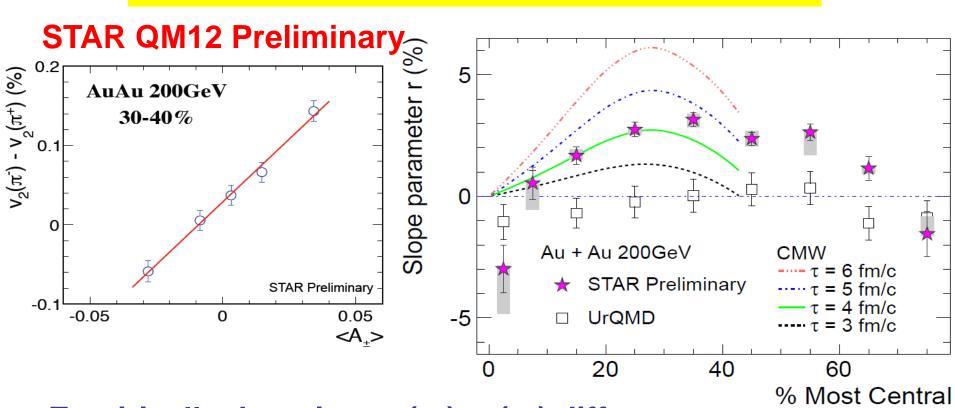
U+U Collisions at RHIC 2012

Uranium – large deformation Variation on v2 induced background level



$(\gamma_{OS}-\gamma_{SS})$ Disappears Faster Than v_2

Elliptic flow v_2 induced background (cluster model or blastwave or balance function or momentum/charge conservation) ALONE does not constitute the entire observed (γ_{OS} - γ_{SS}) signal !!


Chiral Magnetic Wave induced Quadrupole Moment?

- v₂ was measured with the Q-cumulant method.
- Clear A₊ dependency
- $v_2(A_{\pm})$ slopes for π^{\pm} :
 - opposite sign
 - similar magnitude
- v₂ difference vs A[±] may have a non-zero intercept: other physics?

$$v_2^{\pm} = v_2 \mp (\frac{q_e}{\overline{\rho}_e}) A_{\pm}$$

Electric Quadrupole Moment?

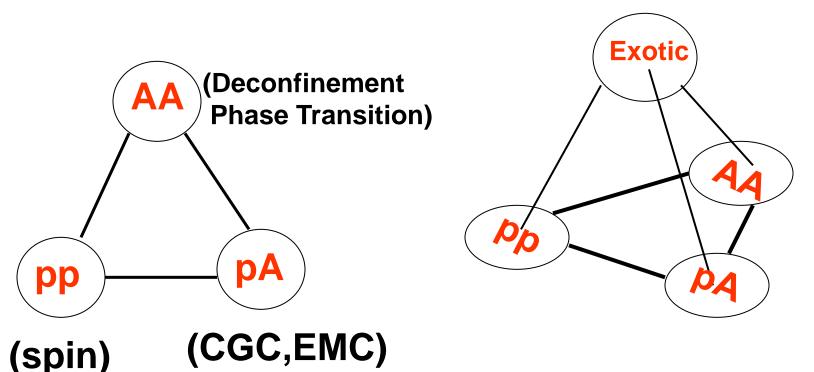
Empirically there is a $v_2(\pi^-)$ - $v_2(\pi^+)$ difference depending on the charge asymmetry! alternative explanations? what does it mean to have an electric quadrupole moment for an exploding system?

Towards a Definitive Answer?

All theoretical models for LPV are wrong or only partially correct!

Experimental Knobs –

- -- turn off QGP and/or change magnetic field
- -- vary the magnitude of the elliptic flow v2


The measured $(\gamma_{os}-\gamma_{ss})$ likely has contributions from possibly LPV signal and background correlations! How to decompose the signal and background?

Need new ideas and experimental approaches!

QCD Beyond and Exotics

QCD -- the fundamental corner stone of the Standard Model RHIC provides a futile ground for exploration of QCD

A New Dimension to RHIC Physics – Dedicated QCD Machine & Beyond

