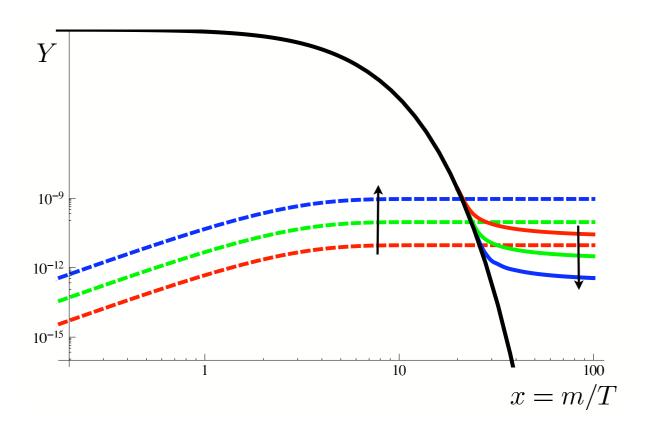
Freeze-In of FIMP Dark Matter

Karsten JEDAMZIK[†]

[†] LUPM, Montpellier

Outline of Talk


- Freeze-out of Weakly Interacting Massive Particles
- Freeze-In of Feebly Interacting Massive Particles

Hall, K.J., March-Russell, West

- The Freeze-In Process
- Comparison to super-WIMPs
- A Unified View of Freeze-In and Freeze-Out
- Detectability
- Candidate Particles
- . Conclusions

Freeze-Out of Dark Matter

- lacksquare need some dark matter particle X stabilizing symmetry (parity)
- annihilation reactions at $X+\bar{X}\to standard\,model\,particles$ freeze out at some $T\lesssim m_X$ and $n_X\ll T^3$

Virtues of Freeze-Out Production of Dark Matter

minimalistic assumptions as well as accelerator testability

thermodynamic and chemical equilbrium shortly before freeze-out

seemingly reasonable assumption since typically $t_{equ}/t_{Hubble} \ll 1$

- $\Omega h^2 \approx 0.1 \left(\frac{\sigma v}{3\times 10^{-26} {\rm cm}^3 {\rm s}^{-1}}\right)^{-1}$ required interactions in principle accelerator testable
- WIMP-"miracle": the required interaction strength is reached roughly at the electroweak scale where new physics is expected

reminiscent to conditions which led to the standard Big Bang nucleosynthesis model

Question:

Is freeze-out of dark matter the ONLY accelerator testable dark matter production mechanisim in thermodynamic equilibrium conditions?

No!

FIMP Dark Matter

production per Hubble time

imagine a particle X which is so feebly interacting with the plasma (in TE) that it will never reach equilibrium abundance

$$\Delta n_X/s \sim \frac{n_{B_1} \Gamma_{B_1 \to B_2 + X} t_H}{s}$$

$$\sim \frac{g_{B_1} T^3 \lambda^2 m_{B_1} M_{pl}/T^2}{aT^3}$$

call it FIMP ≡
"Feebly Interacting Massive Particle"

$$\sim \frac{g_{B_1}\lambda^2 m_{B_1} M_{pl}}{gT^2}$$

take interaction $\mathcal{L} \sim \lambda X B_1 B_2$ with $\lambda \ll 1$ where B_1 and B_2 are bath particles

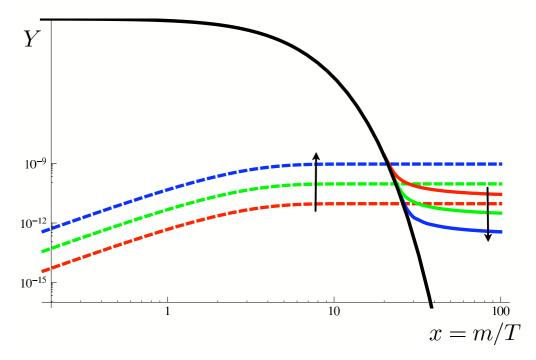
the plasma produces it in attempting to attain equilibrium via $B_1 \rightarrow B_2 + X$ decay production

prod. infrared dominated !!!

$$\rightarrow \Omega_X \sim \frac{g_{B_1}}{g} \lambda^2 M_{pl} \frac{m_X}{m_{B_1}}$$

Difference to super-WIMPs

- super-WIMPs as gravitinos or axinos are also very weakly interacting
- ullet their production is ultraviolet dominated and reheat temperature T dependent


reheat temperature essentially non-testable in accelerators —

requires detailed information of the inflaton sector

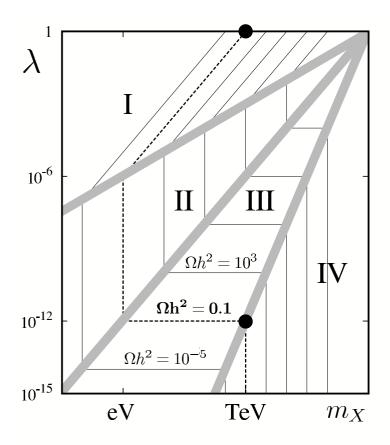
difference between super-WIMPs and FIMPs is renormalizability of interaction

Freeze-In of Dark Matter

production reactions $B_1 \to X + B_2$ become inefficient at $T \lesssim m_{B_1}$ freezing-in (thawing-in) the dark matter abundance at $n_X \ll T^3$

production goes up with interaction strength

Required Interaction Strength

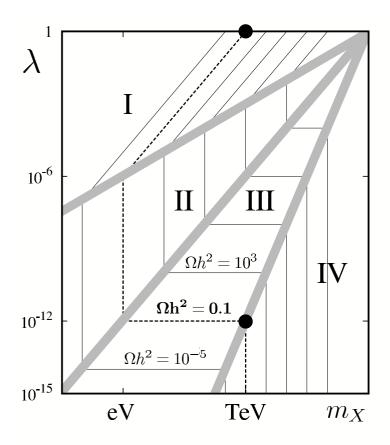

$$\lambda \simeq 1.5 \times 10^{-12} \left(\frac{m_X}{m_{B_1}}\right)^{1/2} \left(\frac{g_*(m_X)}{10^2}\right)^{3/4} \left(\frac{1}{g_{bath}}\right)^{1/2}$$

this is close to $M_{\rm EW}/M_{\rm GUT} \sim 10^{-13}$

 $g_{bath}\gg 1$ possible

A Unified View of Freeze-In and Freeze-Out

$$\mathcal{L} \sim \lambda X B_1 B_2$$
 and $M_x \lesssim M_{B_1}$

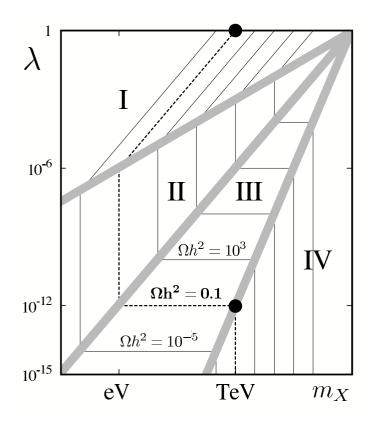


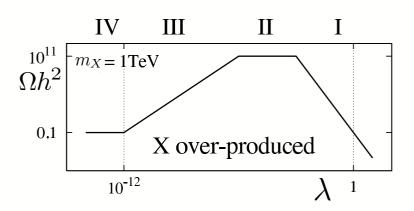
Region I: Coupling λ of X to thermal bath strong enough such that equilibrium $\sim T^3$ density will be attained and at $T < m_X$ $m_X \ll T^3$ will be frozen out \to non-relativistic freeze-out

Region II: Coupling λ of X to thermal bath strong enough such that equilibrium $\sim T^3$ density will be attained – however when $T < m_X$ no further reduction \to relativistic freeze-out

A Unified View of Freeze-In and Freeze-Out

$$\mathcal{L} \sim \lambda X B_1 B_2$$
 and $M_x \lesssim M_{B_1}$


Region III: Coupling to thermal bath NOT strong enough to attain equilibrium density $\sim T^3$ – freeze-in – abundance of X dominated by freeze-in


Region IV: Coupling to thermal bath NOT strong enough to attain equilibrium density $\sim T^3$ – freeze-in – abundance of X dominated by freeze-out of bath particles B and subsequent decay to X

freeze-in completes the lower half of the diagram

A Unified View of Freeze-In and Freeze-Out

$$\mathcal{L} \sim \lambda X B_1 B_2$$
 and $M_x \lesssim M_{B_1}$

freeze-in completes the lower half of the diagram

Detectability of FIMPs?

Production via $B_1 \rightarrow B_2 + X$

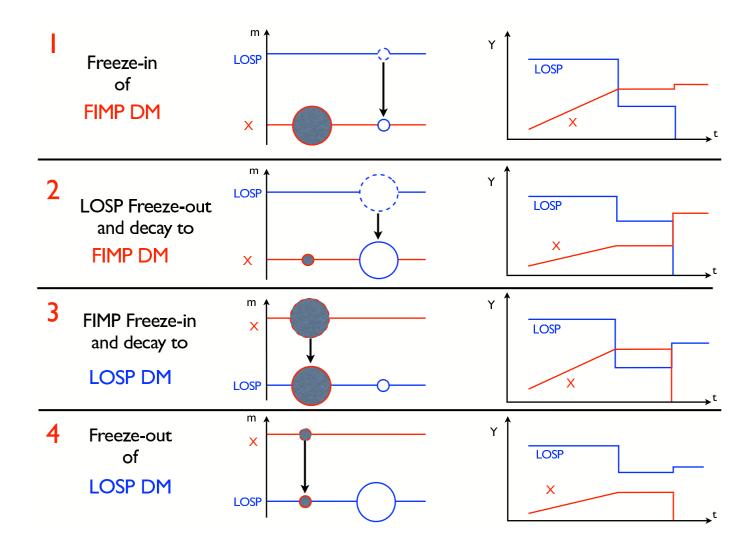
$$\Omega_X h^2 pprox rac{1.09 imes 10^{27} g_{B_1}}{g_*^S \sqrt{g_*^{
ho}}} rac{m_X \Gamma_{B_1}}{m_{B_1}^2}$$

$$au_{B_1} = 7.7 imes 10^{-3} {
m sec}$$
 $g_{B_1} \left(rac{m_X}{100\,{
m GeV}}
ight) \, \left(rac{300\,{
m GeV}}{m_{B_1}}
ight)^2 \left(rac{10^2}{g_*(m_{B_1})}
ight)^{3/2} \left(rac{\Omega_X h^2}{0.011}
ight)^{-1}$

direct test of production mechanism in lab

Production of Dark Matter via Freeze-In of FIMPs

so far, have assumed FIMP is the dark matter particle


- need some (at least approximate) symmetry which stabilizes the dark matter particle, call it parity
- the standard model particles have positive parity
- the dark matter particle and other yet undiscovered particles have negative parity, stabilizing them towards decay into standard model particles

LOSP = "Lightest Observable Sector Particle" which carries negative parity

 $m_{\mathrm{LOSP}} < m_{\mathrm{FIMP}}$ is possible \rightarrow the LOSP may be the dark matter particle

- FIMPs are produced by inverse decays, e.g. $B + LOSP \rightarrow FIMP$, which decay into LOSPs after LOSP freeze-out
- the LOSP self-annihilation cross section can be large

Four possibilities

Candidate Particles

Moduli determining soft SUSY breaking parameters

$$m^{2}\left(1+\frac{T}{M}\right)\left(\phi^{\dagger}\phi+h^{\dagger}h\right) \qquad \mu B\left(1+\frac{T}{M}\right)h^{2} \qquad Ay\left(1+\frac{T}{M}\right)\phi^{2}h$$

$$m_{\tilde{g}}\left(1+\frac{T}{M}\right)\tilde{g}\tilde{g} \qquad \mu y\left(1+\frac{T}{M}\right)\phi^{2}h^{*} \qquad \mu\left(1+\frac{T}{M}\right)\tilde{h}\tilde{h},$$

Dirac Neutrinos within weak scale supersymmetry

$$\lambda LNH_u$$
,

 $\lambda \sim 10^{-13}$ for observed neutrino masses !! Right-handed sneutrino close to perfect candidate for FIMP (cf. Asaka *et al.* 06,07)

LOSP/FIMP Decays during BBN?

two-body decay:

$$\tau \sim 10^{-2} \sec{(\Omega_X h^2/0.1)^{-1}} g_{B_1}$$

- for $\Omega_X h^2 \sim 0.1$ and $g_{B_1} \sim 1$ • no effect
- three-body decay: $\tau \sim 3\sec g^{-2} (\Omega_X h^2/0.1)^{-1} g_{B_1}$
- possible effect, especially when $\Omega_X h^2 < 0.1$ and/or $g_{B_1} \gg 1$
- three-body decay, for example, when LOSP not directly coupled to FIMP

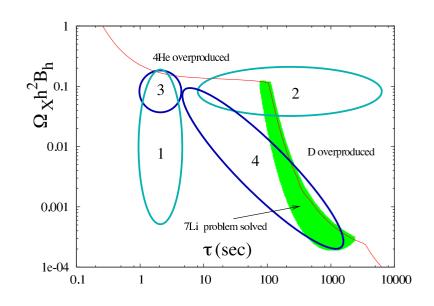


figure assumes LOSP/FIMP three-body decays but production of FIMPs via two-body (inverse) decays

LHC Experiments to find metastable particles

Both, Atlas and CMS, are searching for metastable particle decays as of January 31, CMS has a *hint* of a $\sim 700 {\rm GeV}$ "heavy stable charged particle" ...

How to convince oneself that FIMPs constitute the dark matter?

- the LOSP is charged and/or strongly interacting, NOT a neutralino
- it is metastable
- Its life time falls in the right ballpark to fulfill the $\tau_{\rm LOSP} \gtrsim 10^{-2} {
 m sec} \, m_X/m_{LOSP}$ relationship

FIMPs as dark matter is a very plausible scenario

how to really convince oneself

- one may determine m_{LOSP} and $m_{\mathrm{X}} \sim m_{\mathrm{LOSP}}$ from kinematics
- the τ_{LOSP} - Ω_X relationship is consistent with/close to the WMAP value

Summary

- dark matter production via freeze-out may occur in (plausible) thermodynamic equilibrium conditions, is UV insensitive, and accelerator testable!
- when looking at other dark matter production mechanism with such attributes one is led to the process of freeze-in
- in fact, freeze-in and freeze-out may be unified in a dark matter interaction strength - mass diagram
- candidate particles for *Feebly Interacting Massive Particles* as required in freeze-in do exist, in fact, the required interaction strength $\lambda \lesssim 10^{-12}$ is suggestive
- freeze-in production may lead to a simple testable correlation between the life time of a new fundamental metastable particle and the abundance of the dark matter

LOSP/FIMP Decays during BBN?

two-body decay:

$$\tau \sim 10^{-2} \sec{(\Omega_X h^2/0.1)^{-1}} g_{B_1}$$

- for $\Omega_X h^2 \sim 0.1$ and $g_{B_1} \sim 1$ • no effect
- three-body decay: $\tau \sim 3\sec g^{-2} (\Omega_X h^2/0.1)^{-1} g_{B_1}$
- possible effect, especially when $\Omega_X h^2 < 0.1$ and/or $g_{B_1} \gg 1$
- three-body decay, for example, when LOSP not directly coupled to FIMP

figure assumes LOSP/FIMP three-body decays but production of FIMPs via two-body (inverse) decays