Primer for discussion on common issues

Common issues

Outline

- Effective band gap
- Fluences and leakage current
- Topics for discussion
- Future organization

Stephen Gibson

- Correct leakage currents to a common reference temperature of T_{REF} = 0 °C Chosen to suit the range of sub-detector operating temperatures.
- 2. Use the same temperature correction:

$$I(T_{\text{REF}}) = I(T) \left(\frac{T_{\text{REF}}}{T}\right)^2 \cdot \exp\left[-\frac{E_g}{2k_{\text{B}}} \left(\frac{1}{T_{\text{REF}}} - \frac{1}{T}\right)\right]$$

- 3. Normalize current to the volume of silicon [cm³] rather than per module.
- 4. Standard units: $\mu A fb^{-1}cm^3$

Dedicated discussion today

Effective silicon band gap $E_g = 1.21 \text{ eV}$

following RD50-2001-01 recommendation

Temperature scaling

Stephen Gibson

Effective band gap

- Temperature dependence
 - Fitted E_a compatible with literature value (1.21 eV)
 - Only if constant term is allowed (else 1.13 eV)

Preliminary	"effective band gap E _g "
100V 480 pb ⁻¹	1.12 +- 0.06 eV
150V 480 pb ⁻¹	1.11 +- 0.07 eV
150V 821 pb ⁻¹	1.10 +- 0.04 eV
150V 1204 pb ⁻¹	1.14 +- 0.04 eV

Second Inter-Experiment Workshop on Radiation Damage in Silicon Detectors Effective band gap

1988

Radiation damage studies in Japan, Europe and US. Among others, two papers already published in 1988:

Radiation Damage in Silicon Microstrip Detectors, T. Ohsugi, ... T. Kondo, ... K. Yamamoto .., Nucl. Instr. Meth. A265(1988)105

Stephen Gibson

Leakage current

Leakage current

Improvements to simulations on-going

Stephen Gibson

Leakage current

- In general the agreement between model and data is remarkably good; "within a factor of 2 is already amazing", Marko Mikuz, at last week's 7th "Trento" workshop.
- Agreement between model and data is better at the larger radii of the strip detectors in ATLAS and CMS, where the fluence is neutron dominated:
- For the Pixel detectors, the models needs to be scaled up by less in the inner layers than for the outer layers:

For discussion:

- Why do the experiments see this ~15% discrepancy increase in the outer Pixel radius?
- ALTAS uses Phojet, CMS uses DPMJet III
- Secondaries? Low pT Loopers? Charge fraction?

PPS: Radiation Damage Studies with ATLAS

FLUKA fluence comparison

Earlier work toward checking FLUKA models between experiments:

- Radial dependence at different Z slices being compared for 7 TeV and 14 TeV FLUKA simulations in CMS and ATLAS.
- Initial studies show reasonable agreement at low radii, despite effects of material and different magnetic fields (low p_T loopers).
- Aim for a more detailed comparison of 7 TeV fluence predictions?

PPS: Radiation Damage Studies with ATLAS

Leakage current vs fluence

- Annealing steps from maintenance periods apparent in ATLAS data (-13°C, with stoppages at 20°C). Simple fit for effective alpha yields: $\alpha \sim 1.1 \text{ e-}17 \text{ A/cm}$
- Parallel annealing in CMS (17°C operation, drops to 10°C when detector is off)

Depletion voltage

- Some of the topics:
 - Second metal layer charge loss in LHCb
 - Any non-conformance of results from certain sensors.
 - Understanding depletion voltage evolution / annealing before type inversion.
 - LHC simulated fluences and agreement with leakage currents at low radii.
 - Understanding leakage currents in new alpha regime.
 - Effective band gap and recent measurements.
 - Common framework and future.

Second Inter-Experiment Workshop on Radiation Damage in Silicon Detectors Discussion on future

- We all see the same qualitative effects: increase in leakage current, reasonable agreement with the model"
- How can we improve the comparison?
 - Check the FLUKA prediction and underlying MC:
 - Continue our efforts to check the different models:

- We may consider to arrange ourselves into dedicated sub-groups around topics to go into further detail? Meeting of all sub-detector experts on each topic: e.g.
 - FLUKA simulations of fluences,

Leakage currents and modelling

- Depletion voltage and modelling.
- Anomalous effects.
- Your topic here...

Stephen Gibson

Thanks to all the experts!

