

Progress on investigation of dynamic vacuum (RF structures only)

Sergio Calatroni
With Cedric Garion, Irene Martini, Chiara
Pasquino, Pedro Costa Pinto, Mauro
Taborelli

Requirements from beam dynamics

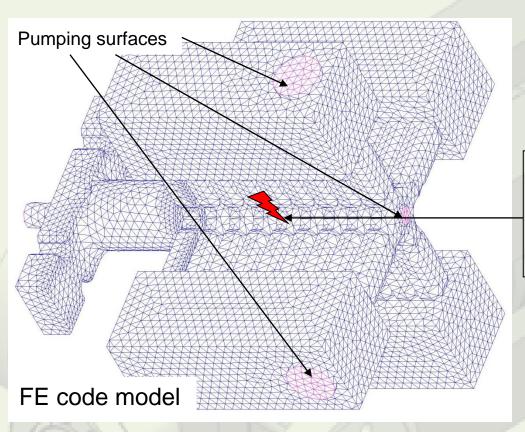
 The vacuum threshold for preventing fast ion beam instability (essentially due to direct field ionization and not the usual impact ionization):

Main beam linac requirements : total $p \le few 10^{-9}$ Torr each for CO, N_2 and/or H_2 O. H_2 is not harmful ($p \le few 10^{-8}$)

- True for practically all the main LINAC length, also inside the RF accelerating structures
- For details see:
 - G. Rumolo, A Oeftiger
 http://cdsweb.cern.ch/record/1406050?ln=en
 - C. Garion https://edms.cern.ch/document/1095288/1

The problem

• Static vacuum: not discussed here


- Dynamic vacuum
 - Breakdowns
 - Dark current

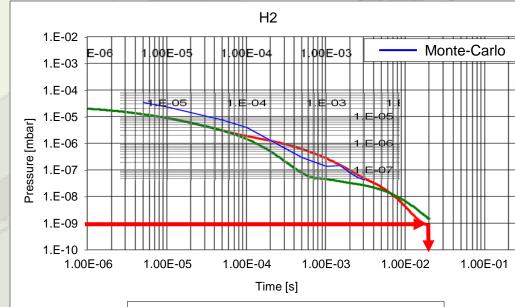
Dynamic vacuum – Breakdown I

2.10¹² H₂ or CO molecules released during breakdown (in a baked system)

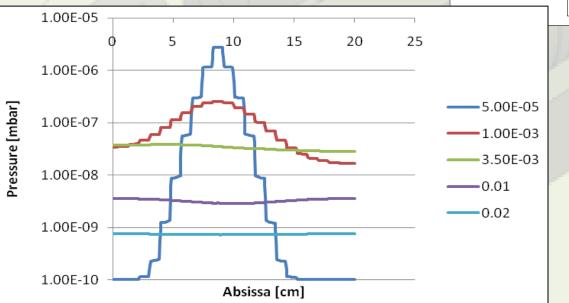
Data measured in DC "spark test" reported in PRST-AB12, 092001 (2009)

Dynamic vacuum – Breakdown II

Calculated with Monte-Carlo and thermal analogy model


Maximum pressure vs time:

20 ms to reach 10⁻⁹ mbar for H₂


20 ms to reach 5x10⁻⁸ mbar for CO

(Note: CLIC repetition rate = 50 Hz

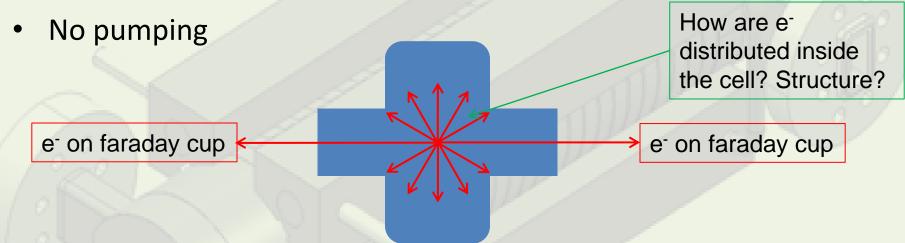
Duty cycle = 20 msec)

Calculated with thermal analogy model (and Monte-Carlo model)

Four manifolds

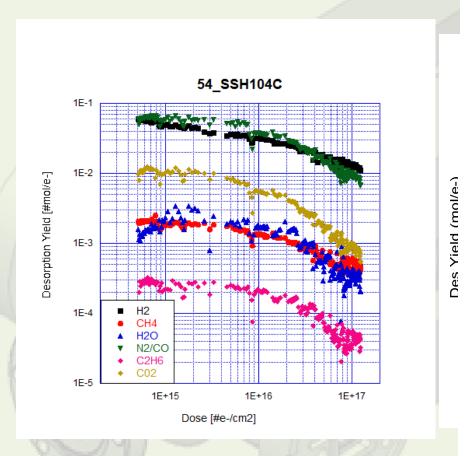
Longitudinal pressure distribution in the cells:

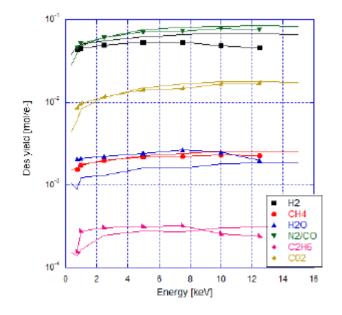
Uniform after ~3 ms

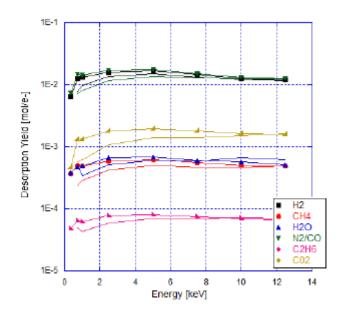


Dynamic vacuum - Dark currents

- Dark-current electrons are field-emitted, impact on surfaces and desorb gas
- Dynamic vacuum by ESD: desorbed molecules fill the whole cell volume

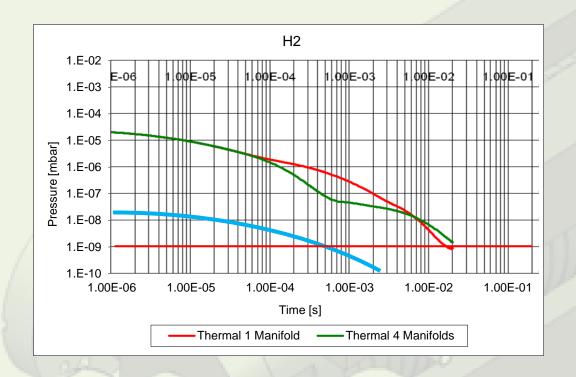

- e current ~ 10^{-4÷-3} A during pulse
- Need e⁻ distribution and energy + ESD coefficients at high energy





ESD c

- Work of C. Pasquino & I. Martin
- New ESD measurement system
- Several surface treatments bein


CCWM2012 Sergio Calatron

Dynamic vacuum I – Results

Molecules released per pulse \sim few 10⁷ both for H₂ and CO, resulting in pressure bursts of few 10⁻⁸ mbar locally

Pressure goes to < 10⁻⁹ mbar in less than 1 msec! This is faster than the sampling time of common vacuum gauges...

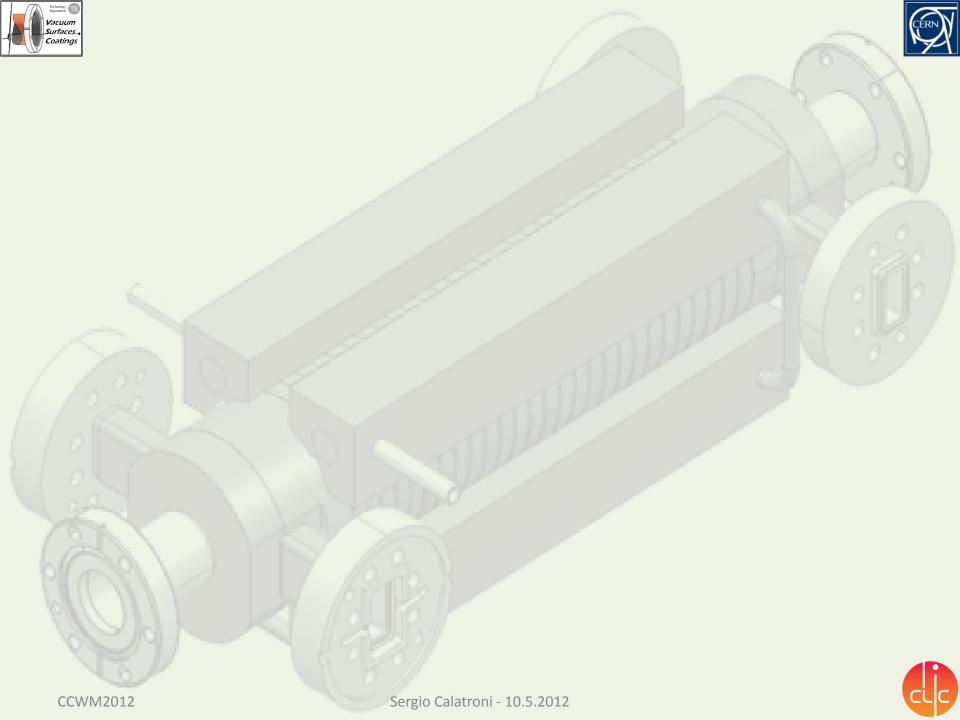
Same plot as for dynamic vacuum due to breakdowns (2x10¹² molecules released)

Extrapolating to 1000 less molecules released due to ESD

Outlook 1

- Static vacuum achieved but only marginally with present design
 - Need more precise data on water re-adsorption (sticking probability depends on coverage)
- Dynamic vacuum due to breakdowns seem to be under control (recovery time ≤ pulse repetition)
 - However, data from RF tests are needed for further crosschecking

Outlook 2



- Dynamic vacuum due to dark currents: still open question
- Experimental programme:
 - ESD data on unbaked copper at high e⁻ energy from CERN √

- Introduce these into MC+FEM models and get gas distribution
- Direct measurements should be attempted in 12 GHz test bench
 - Feasibility should be demonstrated
 - Collaborations?

Molecule speed

	Atomic mass	Molecule speed	Molecule displacement in RF pulse [mm]	
H2	2	1579	3.16E-01	
H2O	18	526	1.05E-01	
со	28	422	8.44E-02	
CO2	44	336	6.73E-02	

Assuming a molecular speed of 300 K = 0.026 eV

Data

T	otal e- current [A]	Pulse duration [ns]	Total charge [C]	Number of electrons	Solid angle (one cell, one side)			lse (e-/cm2)
	1.00E-04	200	2.00E-11	1.25E+08	0.027439024	4.56E+09	S. K.	4.42E+08
								A 100

G. Vorlaufer CERN-Thesis (2002)

Benvenuti et al LEP2 94-21

Mathewson JVSTA 15 (1997) 3093

ESD coefficient for H2	Total H2 molecules	Equivalent pressure at RT (total		
(unbaked copper)	per KF pulse	volumej		
2.00E-01	9.11E+08	1.12E-08		
ESD coefficient for CO2	Total CO2 moiecules			
(unbaked copper)	per KF pulse			
6.00E-02	2.73E+08	3.37E-09		
7 7				
ESD coefficient for H2 (copper baked 250 C)	Total H2 molecules per RF pulse			
1.30E-02	5.92E+07	7.29E-10		
ESD coefficient for CO2 (copper baked 250 C)	Total CO2 molecules per RF pulse			
6.00E-03	2.73E+07	3.37E-10		
ESD coefficient for H2	Total H2 molecules			
(copper baked 300 C)	per RF pulse	375a N		
3.00E-03	1.37E+07	1.68E-10		
ESD coefficient for CO2 (copper baked 300 C)	Total CO2 molecules per RF pulse			
1.60E-03	7.29E+06	8.98E-11		

10⁷ pulses to start conditioning
10 times maximum allowed
10⁹ pulses for ÷10 ESD reduction
(200 days at 50 Hz)
3 times maximum allowed

For the dynamic vacuum of breakdowns we were considering 2x10¹² molecules.

