Proposal for Use of PEP-II as a Linear Colliders Test Facility

Mauro Pivi CERN/SLAC

CLIC Collaboration Meeting 9-11 May 2012

PEP-II - SLAC

 PEP-II positron-electron collider operated 1998-2008, with peak Luminosity 1.2 10³⁴ cm⁻² s⁻¹ and beam currents > 3 A

PEP-II Records Peak Luminosity

Last update: April 8, 2008

12.069×10³³ cm⁻²sec⁻¹ 1722 bunches 2900 mA LER 1875 mA HER

August 16, 2006

Integration records of delivered luminosity

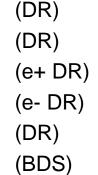
Best shift (8 hrs, 0:00, 08:00, 16:00)	339.0 pb ⁻¹	Aug 16, 2006
Best 3 shifts in a row	910.7 pb ⁻¹	Jul 2-3, 2006
Best day	858.4 pb ⁻¹	Aug 19, 2007
Best 7 days (0:00 to 24:00)	5.411 fb ⁻¹	Aug 14-Aug 20, 2007
Best week (Sun 0:00 to Sat 24:00)	5.137 fb ⁻¹	Aug 12-Aug 18, 2007
Peak HER current	2069 mA	Feb 29, 2008
Peak LER current	3213 mA	Apr 7, 2008
Best 30 days	19.776 fb ⁻¹	Aug 5 – Sep 3, 2007
Best month	19.732 fb ⁻¹	August 2007
Total delivered	557 fb ⁻¹	

PEP-II turned off April 7, 2008

Mauro Pivi, CERN/SLAC

Proposal for the Operation of a Linear Collider Test Accelerator in the PEP-II at SLAC

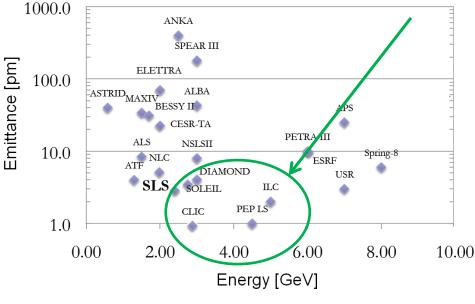
- An accelerator test facility is needed to demonstrate feasibility of Linear Colliders (LC) systems.
- To reduce construction costs for DR, design decisions were made that can be justified only by a continuing experimental R&D program and require validation in a test facility.
- We propose to operate a Linear Collider Test Accelerator (LCTA) facility making use of the PEP-II High Energy Ring (HER) at SLAC.
- The LCTA proposal can be in combination with the PEP-X light source proposal.
- With few modifications, PEP-II provides a unique opportunity to validate key decisions on the timescale of a LC, CLIC and/or ILC



 Goals are: 1) to run both electron and positron beams in the HER with the ultra-small emittancies to provide a full feasibility test of the Linear Colliders Damping Rings (DR) and 2) to de-magnify a beam to unprecedented <10 nm vertical beam size in a dedicated extraction line as a test of the Beam Delivery System (BDS).

Very High Priority topics for ILC and CLIC:

- Ultra-low emittance tuning and operation
- Intra-beam Scattering
- CLIC SC wigglers prototype feasibility tests
- Electron cloud effects (at ~1 pm emittance)
- Ion effects and beam patterns configurations
- Injection Extraction Kickers
- Ultra-small Beam Sizes in an Extraction Line


Other High Priority topics: High gradient RF accelerator cavities, bunch compression, injection extraction kickers, diagnostics and instrumentation.

(DR)

In the PEP-II HER, by increasing the phase advance, lowering the beam energy and the installation of 50 meter 1.5 T wiggler sections, the vertical emittance is reduced to < 1 pm at 2.86 GeV (CLIC-DR) or to 2 pm at 5 GeV (ILC-DR).

	CesrTA	ILC	CLIC	LCTA/ PEP-II
Energy [GeV]	2 - 5	5	2.86	2.86 – 8
Circumference [m]	764	3200	493	2199
εx [nm-rad, 0 curr.]	2.5	0.6	0.07	0.3
εy [pm -rad, 0 curr.]	7	2	0.9	0.9
Beam Current [A]	0.06	0.4	0.35	>0.5
Number of bunches	45	1300	312	1100
Bunch population	2 x10 ¹⁰	2 x10 ¹⁰	4.1 x10 ⁹	2 x10 ¹⁰
spacing, bs [ns]	4	6	0.5	4
σz [mm]	9	6	1.4	9
α	6.7 x10 ⁻³	3.3 x10 ⁻⁴	6 x10 ⁻⁵	-

LCTA - Extraction Line

IP Nominal parameters and LCTA/PEP-II extraction line parameters.

	ILC IP	CLIC IP	LCTA – EXT LINE		
Energy, E0 [GeV]	250	1500	2.86		
Norm. Emittance, γεx [um]	10	0.66	2		
Norm. Emittance, $\gamma \epsilon y$ [um]	0.04	0.02	0.005		
β [*] y [mm]	0.4	0.068	0.1		
Vertical Beam Size [nm]	5.7	1	9		
Bunch length [um]	300	44	9000		
	r 4 smaller than	ATF2 goals			
	Mauro Pivi, CERN/SLAC				

- U.S. DOE
- The CERN Council might substantially support a CLIC-zero test facility, in particular for DR and BDS studies.
- International Collaboration (similarly to ATF2 model)

Project Timeline

Project lifetime: FY13-18

- Submit request for CD0.
- Set Working Group LCTA.
- Preliminary optics design and Cost Estimate in 3 months.
- Conceptual Design Report for CD1 in 3-6 months. Documentation for CD2 in 6-12 months.

Supporting slides

Mauro Pivi, SLAC, ESA Test Beam

LCTA Cost Estimate

HER preparation work for operations

M&S (k\$)	1 18 31	Potoronco
	(k\$)	Reference
2,000		Kharakh
1,000		Kharakh
300		Kharakh
700		Kharakh
1,000		Debarger
1,000		Sullivan
1,000		PCE
1,000		Controls
1,000		
-		
		1
3,000		Kharakh
2,000		Kharakh
		1
500		Uli
		1
	-	Seeman
	300 700 1,000 1,000 1,000 1,000 1,000 3,000 2,000	1,000 300 700 1,000 1,000 1,000 1,000 1,000 3,000 2,000

HER upgrade for LCTA - Share Costs amongst International Collaboration

_			
	Wigglers: 50 m fabrication and installation in straight section or IR-2 region	3,000	Kharakh
	BPM upgrade	2,500	Smith
	BPM: new modules replacement	1,500	Wittmer
	Beam size monitor. Either replace first monitor / interferometer or build new.	3,000	Fisher
	Horizontally move a number of magnets to configure for a periodic lattice	-	
• • • •	Extraction Line for Final Focus - 10 nm beam size	6,000	ATF2
	Install experimental test chambers (also redeploy from CesrTA), magnets, diagnostics,		
	electronics	3,000	CesrTA
-	Total	33,500	

Minimal Design Modification Option for a Low Emittance PEP-II lattice (Yuri Nosochkov).

		Paran	neters				
	3 GeV		4.5 GeV		6 GeV		
	No wiggler	Wiggler	No wiggler	Wiggler	No wiggler	Wiggler	
Emittance, nm	2.2	0.36	5.0	0.80	8.9	1.44	
Bunch length, mm	3.01	4.96	2.99	9.16	3.85	14.53	
Energy spread, %	0.020	0.074	0.030	0.110	0.040	0.147	
Damp. time, x/y/s, ms	1009/1014/508	107/107/53	299/300/151	32/32/16	126/127/64	13/13/7	
Momentum compaction	1.336	1.33e-3		1.33e-3		1.33e-3	
Betatron tune, x/y	31.19 / 32.23		31.19 / 32.23		31.19 / 32.23		
Synchrotron tune	0.031	0.069	0.047	0.056	0.048	0.047	
Chromaticity, x/y	-45.8 / -41.2	-46.0 / -41.2	-45.8 / -41.2	-46.0 / -41.2	-45.8 / -41.2	-46.0 / -41.2	
Energy loss/turn, MeV	0.043	0.412	0.220	2.088	0.695	6.597	
RF voltage, MV	3.9	19.0	13.3	19.0	19.0	19.0	

• The wiggler is included in straights 2 and 6 and has the following parameters: total wiggler length (poles+gaps) = 76.4 m, wiggler period = 0.4 m, pole length = 0.1 m, gap length = 0.1 m, pole field at 4.5 GeV = 1.35 T assuming flat field model.

12 / 13

Vertical emittance can be reduced ~1pm, assuming 0.2-0.3% coupling and 0A bunch current.

Mauro Pivi, SLAC, ESA Test Beam

Major work:

- Positrons injection into HER
- Final Focus Extraction Line <10 nm beam size
- Install experimental test chambers (also redeploy from CesrTA), magnets, diagnostics, electronics
- Installation of wiggler magnet section
- Installation of CLIC prototype wigglers
- Instrumentation: X-ray beam size monitor, BPMs

