# CLIC Collimation Wakefield Studies in ESA at SLAC

Mauro Pivi CERN/SLAC

CLIC Collaboration Meeting 9-11 May 2012





# LCLS light source uses

#### End Station A

# LCLS and ESA at SLAC

Use pulsed kicker magnets to send the beam from the Linac Coherent Light Source (LCLS) to End Station A (ESA)



# CLIC Collimation Wakefield Studies at SLAC End Station A (ESA)

- Collimation wakefield "box installed P. Tenenbaum, S. Molloy *et al.*
- Different jaw apertures & lengths
- Tests: optimal materials and geometry to minimize wakefields





- "Wakefield box" allows swapping of collimators and adjusting jaw aperture
- measured wakefield kick to the beam by downstream BPMs







### **CLIC collimation wakefield: Bunch Length**

- CLIC bunch length is 44 um.
- Bunch length 100 um in ESA. With installation of 4 existing quadrupoles the bunch length can be reduced to 20 um.

- Precise measurement of bunch length for CLIC studies, options :
  - Smith Purcell Radiation bunch Profile Monitor actually under tests in FACET (SLAC)





# Status of ESA facility: installed kicker in LCLS and extracted beam destined to ESA



| LCLS beam parameters | Units            |
|----------------------|------------------|
| Energy               | 3.5 - 14.7 GeV   |
| Charge               | 250 pC           |
| Rep. rate            | 5 Hz             |
| Bunch length         | 100 us – (20*us) |

\* need beam line upgrade of 4 quadrupoles

Profile Monitor PROF:BSYA:1800 07-Feb-2012 20:19:58



Profile image of LCLS beam successfully extracted into line upstream ESA, ready for **CLIC studies**.

Mauro Pivi, CERN/SLAC

# **Supporting slides**



Mauro Pivi, SLAC, ESA Test Beam



#### **Collimator Wakefield Measurements**

R.M. Jones, D. Schulte, R. Tomas, W. Wuensch for the CLIC team

#### Motivation

- Collimator wakefields may limit CLIC performance
- CLIC parameters sit close to limit of formulae applicability
- Previous experiments in ESA (T-480)<sup>a</sup> show discrepancies with model (is the lack of bunch length measurement the culprit?)
- Non-linear components?

# <image><image>

- Bunch length measurement is critical . New electrooptic bunch length instrumentation (CLIC CDR)
- Need BPM resolution in the 100 nm level (partially contributed by CERN)

#### Energy Spectrometer Tests at End Station A Mike Hildreth

#### New SR Stripe Detector

- Next-generation prototype for Energy Measurement test
  - schedule advanced in anticipation of ESA closure/hiatus due to LCLS







#### Next Steps for ESA



# **Development: Short bunch length**

- Interest to short bunches ~44μm (CLIC, accel. R&D..)
- LCLS beam: 10  $\mu\text{m}$  and smaller
- In the A-line, bunch length increases to 100  $\mu m$  due to 24° bend, large dispersion and large R56
- Solution: installation of 4 available QUADs in A-line

