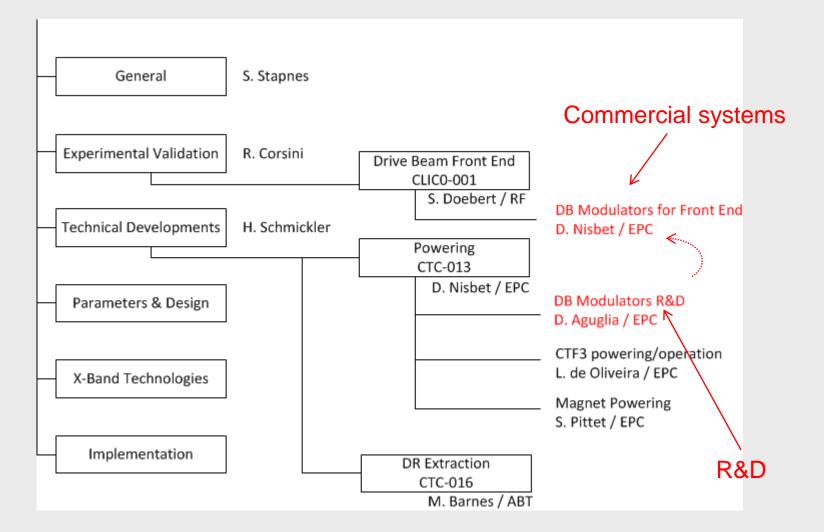


CLIC Drive Beam Klystron Modulators

R&D strategy

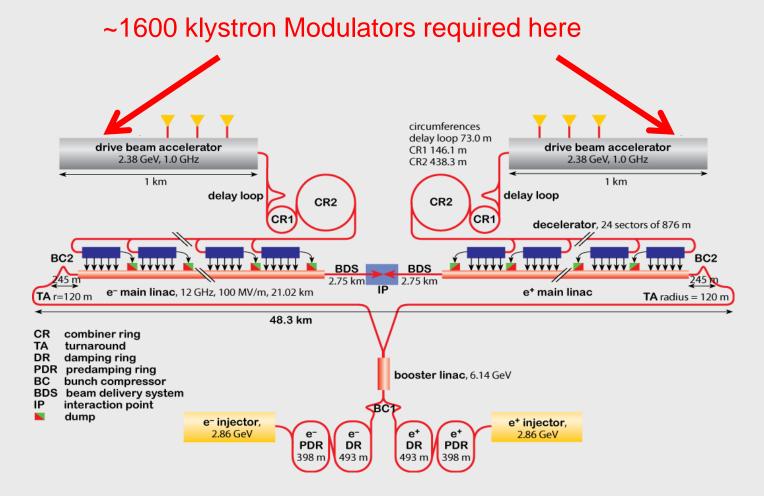

D. Aguglia & D. Nisbet May 2012

1

Power Systems for the CLIC Project

The CLIC PBS for powering

CLICO Injector Project


Modulator-klystrons, 1 GHz, 15 MW IOTs, 500 MHz **Diagnostics** \square \square \square \square \square \square \square \square \square \boxtimes \ge \square \square $\left|\times\right|$ \times \times SHB Gun PB Buncher Acc. Structures 1-2-3 ~ 12 MeV ~ 140 keV

Gun, sub-harmonic bunching, bunching, three accelerating structures,

- 5 long pulse klystrons and modulators, diagnostics
- 3 commercial systems with reduced specs, delivered from 2014-2015
- 2 R&D systems with full Drive Beam specifications delivered 2016-2017

•CLIC studies goal:

-Demonstrate technical & financial feasibility

Hz

%

ppm

-Full scale kly. mod. prototypes required

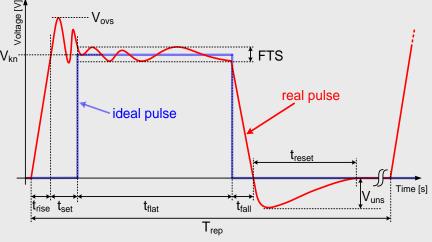
-Collaboration to meet resource and expertise needs

would of main specifications						
Pulse voltage	V _{kn}	150	kV			
Pulse current	l _{kn}	160	А			
Peak power	P _{out}	24	MW			
Rise & fall times	t _{rise}	3	μs			
Flat-top lenght	t _{flat}	140	μs			

Rep,

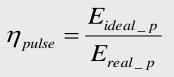
FTS

PPR


50

0.85

10


Madulatar main apacificatio

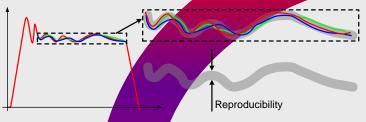
CLIC studies & klystron modulators specs

~300MW required for kly. mod.

Pulse efficiency definition

5

Repetition rate


Flat-top stability

Pulse reproducibility

CLIC studies & klystron modulators specs

Technology challenges

Pulse to pulse reproducibility: 10 to 100ppm

Modulator and voltage measurement reproducibility never achieved before!

AC power quality optimization

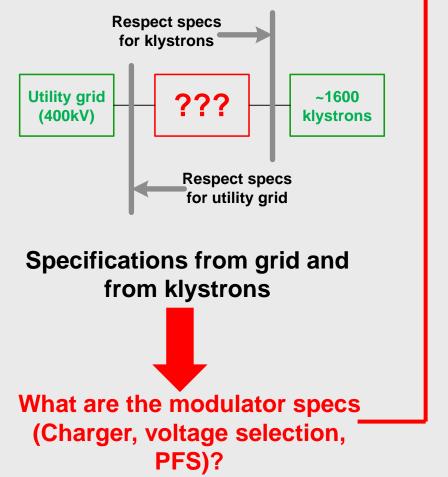
More than 1600 modulators pulsing synchronously! Utility grid power fluctuation minimized (~1%) – tough charger design

Machine availability

With more than 1600 modulators, reliability, modularity & redundancy must be optimized for maximum accelerator availability

Modulator topology selection considering:

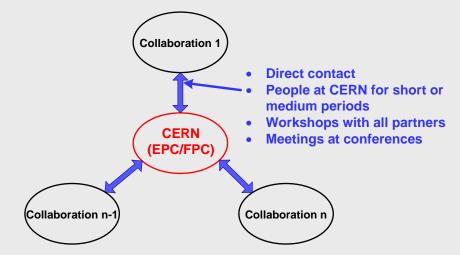
- Efficiency maximization (max. power limited)


- Reproducibility
- Constant power consumption
- Satisfactory accelerator availability

Need for a global approach! Different solutions must be explored (transformer based, fully solid state, HV & LV solutions)

R&D philosophy - @ CERN vs. collaborations

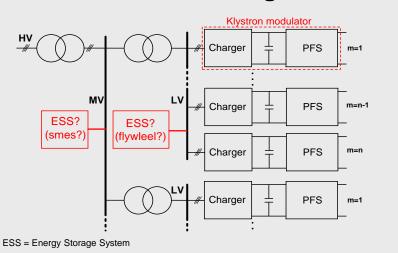
The R&D process needs a global approach to the system!

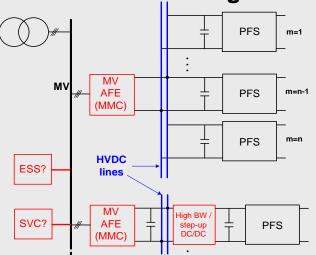

Again, global design approach!

1. Need for partners in specialized fields but with global understanding of the whole system

Very few institutions have all the skills to work in this domain

2. CERN must have the intellectual property and expertise in high performance klystron modulators


CERN coordinates the R&D program



Modulators general description

Several methods for utility grid connection / big impact on performances & cost LV connection to grid HV connection to grid

- During CLIC studies the following main questions/topics will be addressed:
- Is it possible to produce the specified voltage pulse?
- Fully solid state vs. transformer based solutions...who's best?
- > What is the influence of utility grid voltage selection vs. performances?

Survey of European Universities and institutions

	Application		PFS Development			Capacitor Charger Development		
Universities	HV	short pulses	Long pulses	pulse Transfo	bouncer	SW stack	AFE	Resonant topologies
Strathclyde University (UK)	\checkmark	$\mathbf{\overline{\mathbf{A}}}$						
Loughborough University (UK)	\checkmark	$\mathbf{\overline{\mathbf{A}}}$				V		
Ecole Polytechnique Paris	\checkmark	$\mathbf{\overline{\mathbf{A}}}$						
Research Centre Karlsruhe (DE)	\checkmark	$\mathbf{\overline{\mathbf{A}}}$	\square			\checkmark		\square
Université de Pau (FR)	\checkmark	$\mathbf{\overline{\mathbf{A}}}$				V		
Eindhoven (NL)	\checkmark	$\mathbf{\overline{\mathbf{A}}}$				\checkmark		
Oxford (UK)	\checkmark							
EPFL (CH)							Ŋ	${\bf \overline{\Delta}}$
ETH (CH)	\square	M	\square		$\mathbf{\nabla}$	$\mathbf{\nabla}$	$\mathbf{\nabla}$	${\bf \overline{M}}$
Nottingham (UK)	M					Ø	Ŋ	Ø
Institutions	HV	short pulses	Long pulses	pulse Transfo	bouncer	SW stack	AFE	Resonant topologies
Desy (DE)	\checkmark	$\mathbf{\overline{\mathbf{A}}}$	\square		\checkmark	\checkmark		\square
PSI (CH)	\checkmark	\checkmark				\checkmark		
ESS (SE)	\checkmark		\checkmark					

ETH Zürich is the only University/Institution having proven experience in all requested domains. The quality of R&D and realizations is also the highest!

Proposed & qualified partner

ETH Zürich

- Expertise in all fields (chargers, grid, HV, pulse transformers, bouncer circuits)
- Hold enough competencies to optimally design, assemble test and deliver a full power CLIC klystron modulator
- Ready to scientifically and technically COLLABORATE with CERN
- Already requesting third party funding (Fond National Suisse) – Good chances for succeeding!

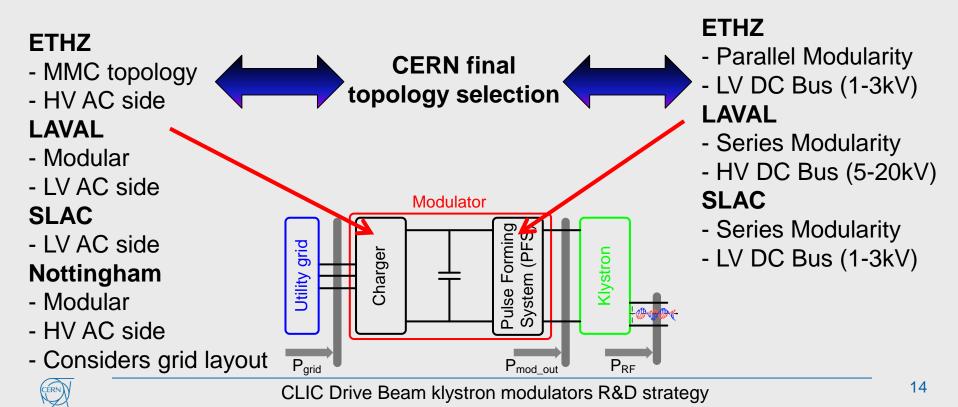
Proposed & qualified partner

- LAVAL University, Canada
- Expertise in pulsed transformers & general magnetic devices and in long pulse klystron modulators
- Ready to scientifically and technically COLLABORATE with CERN (small collaborations already worked effectively)
- Already requesting third party funding (CFI)

Proposed & qualified partner

SLAC, USA

- Experienced team has completed an ILC demonstrator following ~10years R&D, now available for CLIC studies
- R&D based on oil-free, transformer-free, marx topology
- Lower R&D risk due to previous experience
- Will permit CERN to validate SLAC technology
- Design would be licensed for CERN use



Proposed & qualified partner

- Nottingham, UK
- Experienced Laboratory on modular active front ends
- Ready to scientifically and technically COLLABORATE with CERN
- Third part funding available
- Ready to collaborate with other partners in CLIC studies (something required for their part of work)

- Each partner explores a topologically different solution
- After experimental validation of different solutions CERN selects the final one

Collaboration Strategy

- ETHZ
 - Phase 1 & 2:
 - delivery of full power modulator in 2015
- SLAC
 - Phase1:
 - delivery of reduced power demonstrator in 2013
- LAVAL
 - Phase1:
 - delivery of reduced power demonstrator in 2015
- Nottingham
 - Phase1:
 - delivery of reduced power demonstrator in 2014

Collaboration Strategy

Following development phase from SLAC, LAVAL and Nottingham

Phase 2:

- Choose technical solution depending on technical success
 - LAVAL (a) or
 - Nottingham+LAVAL (b) or
 - LAVAL+SLAC (c) or
 - Nottingham+SLAC (d)
- Preference for (a) or (b) due to SLAC manpower costs...

Tentative Schedule

- Preparation of contracts
 - ETHZ
 - Letter of intent now (1 Ph.D. started in May)
 - Finance Committee in June.
 - LAVAL
 - Summer 2012 (2 Ph.D. already started).
 - SLAC
 - Finance committee in September 2012?... Issue of manpower cost...
 - Nottingham
 - Summer 2012

CLIC DB Modulator powering presents several significant technical challenges

Efficiency, reproducibility, availability, power quality

Summary

- To ensure a successful R&D phase, several collaborators with appropriate experience have been selected
 - ETHZ (CH), LAVAL (CA), Nottingham (UK), SLAC (US)
- Two full specification R&D systems will be supplied for validation and use in the CLIC0 Injector
 - Three commercial 'reduced specification' systems will be purchased to allow the facility to start-up, also demonstrating industrial state-ofthe-art

