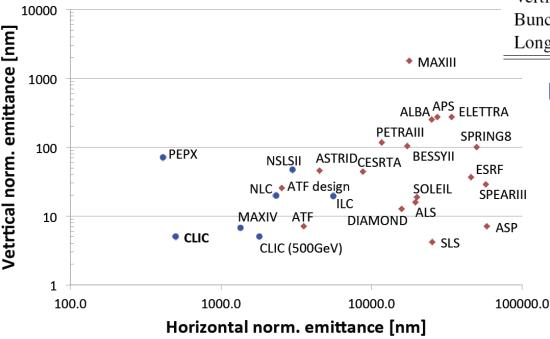


Yannis PAPAPHILIPPOUCERN

Special thanks to Hermann Schmickler

May 9th, 2012

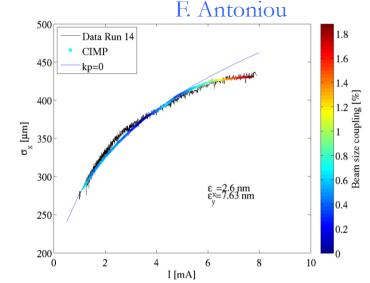

DR experimental program

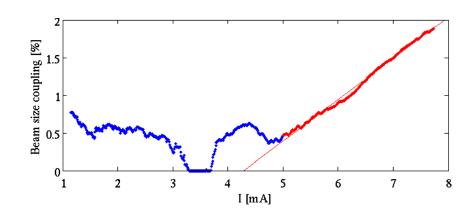
CLIC DR parameters

- CLIC damping rings target ultra-low emittance in all 3 dimensions for relatively high bunch charge
- Dominated by collective effects (IBS, space-charge, ecloud, FII, CSR,...)

Parameters	CLIC@3TeV
Energy [GeV]	2.86
Circumference [m]	427.5
Energy loss/turn [MeV]	4.0
RF voltage [MV]	5.1
Stationary phase [°]	51
Momentum compaction factor	1.3e-4
Damping time x/s [ms]	2/1
Number of dipoles/wigglers	100/52
Dipole/wiggler field [T]	1.0/2.5
Bend gradient [1/m ²]	-1.1
Bunch population $[10^9]$	4.1
Horizontal normalized emittance [nm.rad]	456
Vertical normalized emittance [nm.rad]	4.8
Bunch length [mm]	1.8
Longitudinal normalized emittance [keVm]	6.0

 Challenging technology (SC wigglers, Extraction kickers, RF system, Vacuum, Instrumentation, Feedback)




CLIC DR beam

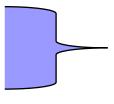
dynamics experiments

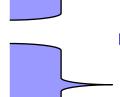
- Low Emittance Tuning □ **SLS**, but also Australian Synchrotron
- IBS
 - CESRTA, SLS
- E-cloud
- CSR
 - □ ANKA, ATF
- Optics, non-linear correction
 - □ DIAMOND, **SOLEIL**
- Fast Ion Instability □ SOLEIL
- Instabilities
 - **SLS**

DR technology and experimental program


- Super-conducting wigglers
 - Demanding magnet technology combined with cryogenics and high heat load from synchrotron radiation (absorption)
- High frequency RF system
 - 1.5GHz RF system in combination with high power and transient beam loading
- Coatings, chamber design and ultralow vacuum
 - Electron cloud mitigation, lowimpedance, fast-ion instability
- Kicker technology
 - Extracted beam stability

Prototype built in BINP, to be tested in ANKA (2013-2014)


 Discussions with ALBA and SLAC (HELP NEEDED)


- Measurements at SPS, ESRF,
 CERTA, discussions with
 MAXlab
- Stripline designed by Spanish industry, to be tested in ALBA, pulser in collaboration with SLAC, Full system test in ATF

Diagnostics for low emittance
 Profile monitors, feedback

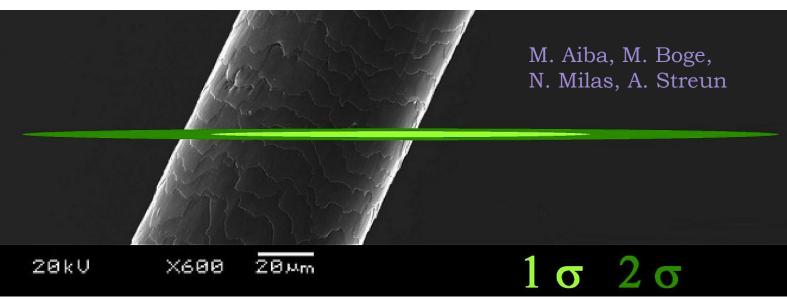
V-UV Profile Monitor (TIARA), initiated collaboration with ALBA

DR R&D

Area	Scope	Institutes	Period	Contract
Optics and non-linear dynamics	Methods and diagnostics for linear and non-linear correction	JAI	2011-2013	MOU
Vertical emittance	Beam dynamics and technology	SLS, MAXlab, INFN/LNF	2011-2013	EU/TIARA
minimization	(alignment, instrumentation) for reaching sub-pm vertical emittance	ACAS	2010-2012	MOU
	0 1	JAI	2011-2013	MOU
Intrabeam Scattering	Experiments for theory/code benchmarking	•		ILC/CLIC collaboration,
E-cloud	Experiments for instability and mitigation	SLS	2010	LER network
Fast Ion Instability	Experiments for theory/code benchmarking, feedback tests	SOLEIL, ATF	2011	LER network
Super-conducting Wiggler	Prototype development and beam tests	KIT, BINP	2011-2013	MOU, K- contract
Fast kicker development	Conceptual design, prototyping and beam measurements (double kicker)	IFIC Valencia, ALBA, ATF	2011-2013	Spanish industry program
RF design	RF prototype and beam tests (including LLRF)	ALBA, SLAC	2011	LER network
Vacuum technology	Desorption tests of coated chambers in a beam line	ESRF, MAXIV	2011	

SVET: "SLS Vertical Emittance Tuning"

Objectives:


- Allow the Swiss Light Source (SLS) to be used as an R&D Infrastructure
- Demonstrate ultra-small vertical emittances as required for future Linear Collider Damping Rings (e.g. 5 nm normalized, <1 pm @ 2.86 GeV for CLIC)
- Enable to extend tests to lower energies (IBS dominated regime).

Vertical emittance WORLD RECORD

- After re-alignment campaign of last autumn, series of MD shifts scheduled (end of 2011)
- Beam of 400 mA stored in top up mode
- Different methods of coupling suppression using 36 skew quadrupoles (combination of response matrix based correction and random walk optimisation)
- Performance of existing emittance monitor had to be further stretched to get beam profile data at a size of around 3-4µm
- Vertical emittance reduced to a minimum value of 0.9±0.4pm (CLIC damping rings target vertical emittance) which is a new world record
- Work in progress for reproducibility of this result and understanding of systematic model errors

Low Emittance Rings' network

- Bring together scientific communities of synchrotron light sources' storage rings, damping rings and lepton colliders in order to communicate, identify and promote common work on topics affecting the design of low emittance lepton rings
- Initiated by a Low Emittance Ring workshop, 01/2010@CERN, see http://cern.ch/ler2010
- State of the art in design of accelerator systems especially in X-ray storage rings approaches the goals of damping rings for linear colliders and future B-factories' upgrade projects
- Common tasks identified including beam dynamics but also technology
- Second workshop in 10/2011 @ Heraklion acts as a catalyzer, see http://cern.ch/lowering2011
- Collaboration network enable scientific interaction and coordination for common design work including measurements and tests in existing facilities for achieving ultra-low emittance, high intensity beams with remarkable stability

Low-E-Ring

Coordination and Tasks

- Coordinators: Y. Papaphilippou (CERN), S. Guiducci (INFN-LNF), R. Bartolini (STFC-JAI-DIAMOND)
- Members: M. Biagini (INFN-LNF), M. Boege (PSI), R. Nagaoka (Soleil), H. Schmickler (CERN)
- Additional non-EU members: M. Palmer (Cornell), J. Urakawa (KEK)
 Participants but not contractual partners
- □ Task 1: Low Emittance Ring Design (LERD)
 - Coordinator: M. Boege (PSI)
- □ Task 2: Beam INstabilities, Impedances and Vacuum (BINIV)
 - Coordinator: R. Nagaoka (SOLEIL)
- □ Task 3: Low Emittance Rings Technology (LERT)
 - Coordinator: H. Schmickler (CERN)
- Interest expressed by the 28 following institutes: ANKA-KIT, ANL, Australian Synchrotron, BESSY/HZM, BINP, BNL-NSLSII,CELLS-ALBA, CERN, Cockroft Ins, CIEMAT, Cornell Un., DESY, Elettra, ESRF, FNAL, IFIC-Valencia, INFN-LNF, JASRI/SPring-8, JAI-DIAMOND, KEK, LBNL, MAXLAB, NTUA, PSI-SLS, SLAC, SOLEIL, Un. Of Creta, Un. Of Thessaloniki.

Dream Damping Ring Test Facility

- Ring achieving lowest possible emittances in all three dimensions, in the range of few GeV
 - □ Vertical and longitudinal easier than horizontal
- Short bunch train structure similar to damping rings
 - Bunch spacing of 0.67ns (1.5GHz RF system) should be a good compromise
 - Space for installing wigglers, kickers (and extraction line), vacuum test areas, RF, instrumentation
- Beam conditions for studying IBS, space-charge, low emittance tuning, e-cloud (positrons), fast ion instability, CSR...
 High brightness single bunches/trains, small bunch length
 - Available beam time for experimental tests Y.P., 10/05/2012 DR experimental program

Evans and Schmidt, 1988

- Already proposed as damping ring for CLIC and lately LHeC
- Low energies (4-10 GeV) in coasting mode
- Need wigglers (~300m) to get low horizontal emittance (3microns) and fast damping (a few tens of ms)
 - May gain by lattice modification
- RF system upgrade
 - Total voltage needed (Energy loss/turn of a few tens of MeV)
 - Different RF frequency (the higher the better)

Need to revive lepton injector (now CTF) and transfer lines

			-		
Å	8	F	G	н	1
VARIABLES		WITH WIGGLER		Intrabeam	scattering
ETA	0.0018	brho	13.3424	ep	0.001637
VOLTS(V)	4.00E+07	wiggler deflection	0.00356	i A	3.9E-06
Q VALUE	27	Bending radius	14.04463	k	0.005958
MOMENTUM COMPAC	0.0018	2*pi*rho^2	1239.369	8	0.003439
BETA (V/C)	. 1	F	0.005544	d	0.997034
ENERGY DPN JE	2	Parameters With wigg	ier on	Inc2a	8.492016
RADIAL DPN JX	1	Energy loss per turn	5.51E+06		1.37E+00
ENERGY(EV)	4.00E+09	Energy damping time	1.67E-02	Tz(sec)	1.23E+02
PARTICLES/BUNCH	5.00E+09	Horizontal damping time	3.34E-02		
HORIZONTAL BETA	40	Energy spread	9.11E-04	ŧ	179.3655
VERTICAL BETA	40	Synchrotron Tune	0.168447	1	85.4419
HARMONIC NUMBER	10000	Bunch length sigma	1.07E-02	2	532.8773
BWIGGLER (TESLA)	0.95	Sigmasquared/beta	3.63E-10		27.19585
Pole Length	0.05	Normalised emittance	2.84E-06))	179.3655
Total Wiggler Length	300	Norm long emit	7.64E-02	2	
		D 1	•1•	0011	

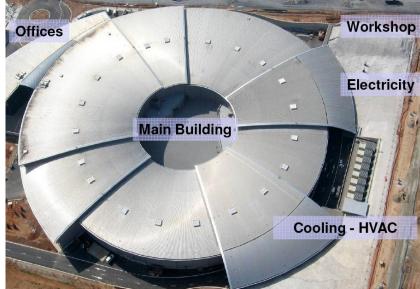
Papaphilippou 2011

Parameter [unit]	High Rep-rate	Low Rep-rate				
Energy [GeV]	10	7				
Bunch population [10 ⁹]	1.6	1.6				
Bunch spacing [ns]	2.5	2.5				
Number of bunches/train	9221	9221				
Repetition rate [Hz]	100	10				
Damping times trans./long. [ms]	2/1	20/10				
Energy loss/turn [MeV]	230	16				
Horizontal norm. emittance $[\mu m]$	20	100				
Optics detuning factor	80	80				
Dipole field [T]	1.8	1.8				
Dipole length [m]	0.5	0.5				
Wiggler field [T]	1.9	-				
Wiggler period [cm]	5	-				
Total wiggler length [m]	800	-				
Dipole length [m]	0.5	0.5				
Longitudinal norm. emittances [keV.m]	10	10				
Momentum compaction factor	10^{-6}	10^{-6}				
RF voltage [MV]	300	35				
rms energy spread [%]	0.20	0.17				
rms bunch length [mm]	5.2	8.8				
average power [MW]	23.6	3.6				

	OBLA C-banc test star	1 All	l-East		
PS SLS	I-West				
	WLHA 250 MeV	-		SwissFEL	
T	Injector	Aare river			

	SLS Parameter	Value
	Energy [GeV]	2.411
	Circumference [m]	288
	Energy loss/turn [MeV]	0.54
	RF voltage [MV]	2.1
	Mom. Comp. factor	6.05e ⁻⁴
	Damping times h/v/l [ms]	8.59/8.55/4.2 6
	Hor. emittance [nm rad]	5.6
	Vert. emittance [pm rad]	0.9
	Bunch length [mm]	3.8
S	Energy spread [%]	0.086

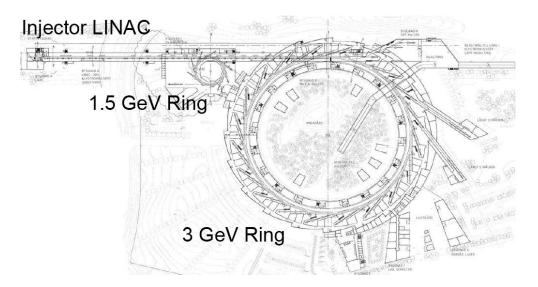
Ultra-low emittances and ability to run at low energies Energy spread


- □ Horizontal norm. emittance of 26microns (2.4GeV) down to 5microns (1.6GeV)
- Record vertical emittance of 0.9pm @ 2.4GeV (4.2nm normalized!!!). This is translated to 2.8nm normalized if established @ 1.6GeV
- □ Bunch length of ~4mm, energy spread of 0.09% (long. norm. emittance of 7.9keV.m @ 2.4GeV)
- 1.5GHz, 3rd Harmonic cavity
- Proximity with Swiss FEL (can EAST meet WEST or 1 river to cross?)
- Very close to the dream test facility
 - □ BUT mainly a user facility

ALBA

- Recently commissioned
 - Horizontal emittance of 4nm (23microns normalised, vertical not yet fully op
- Ability to run at lower energies (not demonstrated)
- RF system powered with IOTs
- 3rd harmonic cavity (1.5GHz)
- Super-conducting wiggler from BINP
- Some free straight sections for installing new equipment for tests
- Not yet fully booked by users but it will come

Electron beam energy	3.0 GeV
Storage Ring Circumference	268.8 m
Number of cells	16
Symmetry	4
Straight section lengths	4 x 8.0 m
	12 x 4.4 m
	8 x 2.6 m
Beam current	400 mA
Emittance	< 4 nm.rad
Lifetime	> 10 h



Ultra-low horizontal emittance for 3GeV ring
 0.2nm @ 3GeV including IBS effect (1micron normalized) using high field (2.2T) PM wigglers
 A lot of fancy features

- Compact magnets, multipole kicker, highfield wigglers, instrumentation
- 100MHz RF system
 - Long bunches of 50mm rms length using Landau cavity
- Commissioning of ring starts in 2015

3	1.5	GeV
500	500	mA
528	96	m
0.2 - 0.4	6	nm rad
20	12	
4.8	3.5	m
45	184	μm
2	13	μm
10	10	hours
	500 528 0.2 - 0.4 20 4.8 45 2	500500528960.2 - 0.4620124.83.545184213

IP parameter	nominal	04/2010	12/2010	02/2012
beam energy	1.3 GeV	1.3 GeV	1.3 GeV	1.3 GeV
€ _x	2 nm	1.7 nm	1.8-2.7 nm	1.84 nm
ε	12 pm	<10 pm	28-64 pm	15.6 pm
β_x^*	4 mm	40 mm	10 mm	10 mm
β_{y}^{*}	0.1 mm	1.0 mm	1.0 mm	0.3 mm
σ_x^*	2.8 µm	10 µm	7.5 µm	4.3 µm
σ_{y}^{*}	35 nm	900 nm	439 (247?) nm	165 (100?) nm

- Ideal for extraction kicker studies
 - Double kicker system
- Low vertical emittance <10pm</p>
 - \square A lot of beam size instrumentation
 - First IBS studies
 - Discussions for ATF3 damping ring experimental program combined with FF studies

	R Lattice Parameters Ultra low emittance baseline lattice				i <mark>tics implem</mark> namics studies flux in EC exp	S	regions
Energy [GeV]	2.085	5.0	5.0	E[GeV]	Wigglers	ε _x [nm]	
No. Wigglers	12	0	6	(1.9T/PM)	(1.9T/PM)		
Wiggler Field [T]	1.9	_	1.9	1.8	12/0	2.3	
Q _x		14.57		2.085	12/0	2.5	IBS
Q _y		9.62		2.005 12/0		2.5	Studies
Q _z	0.075	0.043	0.043	2.3	12/0	3.3	
V _{RF} [MV]	8.1	8	8	3.0	6/0	10	
ε _x [nm-rad]	2.5	60	40	4.0	6 /0	23	
τ _{x,y} [ms]	57	30	20				
α _p	6.76×10 ⁻³	6.23×10 ⁻³	6.23×10 ⁻³	4.0	0 /0	42	
σ _ι [mm]	9	9.4	15.6	5.0	6/0	40	
σ _E /E [%]	0.81	0.58	0.93	5.0	0/0	60	
t _b [ns]	2	≤4, steps of 2	<u> </u>	5.0	0/2	90	

- Huge effort for e-cloud evaluation and mitigation
 - Positrons and electrons, vacuum chamber test areas
- High-field wigglers
- Variable energy, low horizontal emittance

- Low Emittance Tuning
- IBS measurements
- Instrumentation for position, beam size, e-cloud
- Future running?

Linear Collider Test Accelerator / PEPII

	CesrTA	ILC	CLIC	LCTA/ PEP-II
Energy [GeV]	2 - 5	5	2.86	2.86 - 5
Circumference [m]	764	3200	493	2199
ϵ x [nm-rad, 0 curr.]	2.5	0.6	0.07	0.3
ϵ y [pm -rad, 0 curr.]	7	2	0.9	0.9
Beam Current [A]	0.06	0.4	0.35	0.5
Number of bunches	45	1300	312	1100
Bunch population	$2 \text{ x} 10^{10}$	$2 \text{ x} 10^{10}$	4.1 x10 ⁹	$2 \text{ x} 10^{10}$
spacing, bs [ns]	4	6	0.5	6
σz [mm]	9	6	1.4	9
α	6.7 x10 ⁻³	3.3 x10 ⁻⁴	6 x10 ⁻⁵	-

IP Nominal parameters and LCTA/PEP-II extraction line parameters.

	ILC IP	CLIC IP	LCTA – EXT LINE				
Energy, E0 [GeV]	250	1500	2.86				
Norm. Emittance, yɛx [um]	10	0.66	2				
Norm. Emittance, γεy [um]	0.04	0.02	0.005				
β [*] y [mm]	0.4	0.068	0.1				
Vertical Beam Size [nm]	5.7	1	9				
Bunch length [um]	300	44	9000				
Factor 4 smaller than ATF2 goals							

Mauro Pivi SLAC

Conclusion

A number of existing or future low emittance rings are approaching design goals of CLIC damping rings
 Some of them can be combined with a bunch
 ^c May the dream come true theorem the true theorem in the true theorem is a second second

Difficulty lies less on establishing an experimental program but more on the machine availability for running such experiments