Main Linac Experimental Tests

A. Latina (CERN)

CLIC Collaboration meeting - May 9-11, 2012 - CERN

Motivation: Main linac Beam-Based Alignment

- Pre-alignment O(10um)
- with wire system
- detailed model in simulations
- Dispersion free steering
- aligns BPMs and quadrupoles
- Move girders onto the beam
- use wakemonitors
- removes wakefield effects

- Straight reference line defined by overlapping wires
- Girders are aligned to these wires
- Detailed work ongoing on module integration, mechanical alignment in module, wire system test, sensor cost reduction, use of laser system

CLIC Beam-based alignment strategy

- 1:1 correction
 - Makes beam pass the main linac
- Dispersion free steering
 - Removes dispersion, align BPMs and quadrupoles
 - Will use the BC and reduced gradient in the linac to create the energy difference
- RF-Alignment
 - Removes residual wakefield and dispersive effects
 - Relies on wake field monitors in the accelerating structures and girder movers

Main Linac Considerations

Emittiance	growth	at 500GeV	after DFS
	SIOVILI		aitti Di J

Imperfection	With respect to	Value	$\Delta \varepsilon_y$ 1-2-1 [nm]	$\Delta \varepsilon_y$ DFS [nm]	$\Delta \varepsilon_y$ RF [nm]
girder end point	articulation point	5 μm	0.62	0.62	0.02
roll	longitudinal axis	$100 \mu \text{rad}$	0.23	0.23	0.23
BPM offset	wire reference	$14~\mu\mathrm{m}$	340.86	7.11	0.08
cavity offset	girder axis	$14 \mu\mathrm{m}$	3.19	3.19	0.01
cavity tilt	girder axis	141 μ rad	0.10	0.43	0.41
BPM resolution		$0.1 \mu \mathrm{m}$	0.00	0.51	0.01
wake monitor	structure centre	$3.5 \mu\mathrm{m}$	0.00	0.00	0.21
all			353.88	16.27	0.95

Main design issues

- Wakefields
- BPM alignment
- wake monitors
- structure tilt
- BPM resolution
- quadrupole roll
- quadrupole stability
- vacuum

- Design is OK
- Imperfection mitigation achieves target
- DFS has not been tested
- many effects were discovered during the studies, so maybe we miss
- emittances are unprecedented in linacs

one

(10nm vs. >1μm)

4

Dispersion-free steering

- Basic idea: use different beam energies to measure the dispersion and correct it
- CLIC:
 - Accelerate the beam with different gradients
 - Create initial energy difference using Bunch Compressor
 - (Alternative, in theory: scale the magnet focusing)
- Optimize trajectory and dispersion at the same time:

Bunch compressor for DFS

z [µm]

- Use BC2 to create the initial energy difference needed by DFS
- Introduce an offset in the RF-phase of the accelerating structures of the BC

Beam-Based RF-Alignment

- RF-Alignment moves the girder to zero the average offset of the beam
- Each structure is equipped with a wakefield monitor, positioned with RMS error 5 μm
- Up to eight structures are on a movable girder
- The final mean offset is σ_{wm} / \sqrt{n}
- Simulations align each cavity individually

Growth along the ML

Simulation for a CLIC 3 TeV Linac, 100 random seeds

Emittance preservation goal is achieved

Growth along the ML

- Emittance growth along the main linac due to the different imperfections
- The growth is mainly constant per cell
 - This follows from first principles applied during lattice design
 - Except for structure tilt, due to uncorrelated energy spread (flexible weights to be investigated)
- Some difference for BPMs
 - Due to secondary emittance growth

Experimental Validation

 Experimental validation with a real machine is important

- DFS has never been successfully tested
 - Previous attempts of DFS validation haven't given conclusive results (the reasons have been understood, the principle holds)

Double Challenge: BBA, and SYSID

- System Identification
 - Measures the model / response matrix
 - Good system identification is crucial for BBA
 - Requires a stable machine during measurement
 - Benefits from high BPM resolution
 - Time of convergence proportional to the number of correctors
- Beam-Based Alignment
 - Needs to be validated

Review of possible linac test facilities

Present time:

- SLC-FACET
- DESY's FLASH (small energy 1.6 GeV)
- SPring-8 (small energy, large emittance)

Future:

- Swiss FEL (better, has small emittance < 0.6 um)
- DESY's XFEL (large emittance, 1.4 um)

SLAC Linac

https://slacspace.slac.stanford.edu/sites/ard/facet/sarec11/Documents/ FACET-S20-beam-parameters.pdf

	Start	End	Remark
Energy [GeV]	1.19	23	
En. Spread RMS [%]	1.5	1.0	
Charge [nC]	3.2	3.2	
$(\varepsilon_{N,x}, \varepsilon_{N,y})$ [µm×rad]	(30, 3)	(30, 3)	normalized emittance
(σ _x , σ _γ) [μm]	(250, 70)	(75, 25)	
σ_{z} [μ m]	1500	100	
Rep. Rate [Hz]	-	1-30	
Length [km]	-	2	

Tests at SLC-FACET

- SLC is the only linac currently available with suitable parameters:
 - Still, large emittances: (30, 2.5) um rad, and large BPM resolution: 50 um (one-shot)
 - Good for testing SYSTEM IDENTIFICATION
 - Good for testing DFS
- Tests are on-going
- We need more beam-time

Simulation of System Identification at FACET

Assumed BPM resolution = 10 um (1 iteration: 15 seconds), 60% of the correctors

Simulation of BBA at FACET

- SLC beam parameters:
 - Emittances are: (30, 2.5) um
 - Bunch length is 1.5 mm, Simulated bpm resolution is 5 um
 - Energy goes from 1.19 to 23 GeV
- DFS possible using RF-phase offsets in some linac sectors

Final emittance growth after DFS is ~1.4 um (~60%)

Simulation of RF-Alignment at SLC

We simulated RF-Alignment at SLC (where actually it cannot be applied). The simulations are the average of 100 random seeds.

First Tests: Reconstructed R12's for COR:LI15:402

First Tests: System Identification

Reconstructed Response matrix for 400 m of linac

Two BPMS are not working.

FACET: Status and Plan

Some tests of control and System Identification have been successful

We need more beam-time to complete the experiment

- Simulations show that is not straight-forward:
 - Strong wakefields, larger BPM resolution

CLIC and SLC-FACET

CLIC:

- has different beam parameters: smaller emittances
- more advanced diagnostics: <1 um bpm resolution, WF-monitors
- more effective BBA: emittance growth ratio DFS/1:1 is ~15 (due to different optics, BNS damping, bunch compressor support)

SLC: we have limited beam-time and depend on machine performance

Daniel's Idea for a Test Facility

Damping Ring + Bunch Compressor + Linac + Final Focus / (alternatively: Light Source + XFEL)

Example parameters:

- 2GeV initial energy,
- 250μm bunch length,
- 0.8*3.7e9 particles

Options for the BC

- CLIC, BC1-like, 0.59 nC:
 - Bunch length: 1.5 mm -> 280 um
 - Energy: 2.86 GeV
 - RF: 2 GHz
- ILC-like, 3.2 nC:
 - BC1: 6-9 mm -> ~1 mm; BC2: ~1 mm -> 300 um
 - Energy: 5 -> 15 GeV
 - RF: 1.3 GHz
- ILC-SB2009: Single-Stage BC, 3.2 nC:
 - Bunch length: 6 mm -> 300 um
 - Energy: 5 GeV
 - RF: 1.3 GHz

Summary and Conclusions

- CLIC emittance preservation relies on beam-based alignment techniques and system identification: experimental validation is important
- An experimental program is foreseen for the next years, but limited by availability and performances of facilities
- Currently, on-going tests at FACET:
 - Great chance to prove SYSID and DFS
 - But it doesn't cover many CLIC specificities (nm emittances, RFalignment, BC and ML chain for DFS)

CLIC main beam parameters

Parameter	Symbol	CLIC
centre of mass energy	E_{cm}	3000 GeV
luminosity	L	$5.9 \cdot 10^{34} \; \mathrm{cm}^{-2} \mathrm{s}^{-1}$
luminosity in peak	$L_{0.01}$	$2 \cdot 10^{34} \; \mathrm{cm}^{-2} \mathrm{s}^{-1}$
gradient	G	100 MV/m
charge per bunch	N	$3.72 \cdot 10^9$
bunch length	σ_z	44 μ m
hotizontal emittance	$arepsilon_x$	600 nm
vertical emittance	$arepsilon_y$	100 nm
bunches per pulse	n_b	312
distance between bunches	d_b	0.5 ns
repetition frequency	f_r	50 Hz

Final emittance growth in the ML

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	σ_{BPM}	14 $\mu\mathrm{m}$	$0.367\mathrm{nm}$
BPM resolution		σ_{res}	0.1 $\mu\mathrm{m}$	$0.04\mathrm{nm}$
accelerating structure offset	girder axis	σ_4	10 $\mu\mathrm{m}$	$0.03\mathrm{nm}$
accelerating structure tilt	girder axis	σ_t	200 μ radian	$0.38\mathrm{nm}$
articulation point offset	wire reference	σ_5	12 $\mu\mathrm{m}$	$0.1\mathrm{nm}$
girder end point	articulation point	σ_6	$5\mu\mathrm{m}$	$0.02\mathrm{nm}$
wake monitor	structure centre	σ_7	$5\mu\mathrm{m}$	$0.54\mathrm{nm}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian	$\approx 0.12\mathrm{nm}$

Emittance preservation goal is achieved

Potential main linac test facilities

Swiss FEL

http://www.psi.ch/swissfel/swissfel-accelerator

Electron accelerator consisting of a high-brightness electron gun, a booster, three sections of linear accelerator (linac) and two bunch compressors (BC).

Beam Parameters	Start	End	Remark	
Energy [GeV]	2.1	5.8		
En. Spread RMS [%]	0.016	0.006	350 keV	
Charge [nC]	0.2	0.2		
Peak Current [kA]	2.7	2.7		
$(\varepsilon_{N,x}, \varepsilon_{N,y})$ [µm×rad]	(~0.6, ~0.6)	(~0.6, ~0.6)	normalized emittance	
σ _z [μm]	7500	7.5		
RF [GHz]	-	6	NC	
Length [km]	-	0.8		

DESY's FLASH

http://www.xfel.eu/sites/site_xfel-gmbh/content/e63594/e65073/e126274/e134426/13Feldhaus_StatusandExtensionofFLASH_eng.pdf

Possible long-term scenario for FLASH

	FLASH1	FLASH2	FLASH3
Energy (GeV)	0.7-1.6	0.7-1.6	0.7-1.6
Peak current (kA)	2.5	2.5	2.5
Charge (nC)	0.5	0.5	0.5
Normal. emittance (mm mrad)	1.0*	1.3	2.0
Energy spread (MeV)	0.2	0.5	1.0
Wavelength range @ 1.6 GeV	1.5 – 2	2.5-6.5	8-12
Undulator period (mm)	23	31.4	36
Minimum gap	10	9	9
Saturation length	<36	<30	<20
Total wavelength range**	1.5 – 10	2.5 – 40	8 – 80

DESY's XFEL Linac

http://xfel.desy.de/technical_information/electron_beam_parameter/

Main Linac Section 2/2

Beam Parameters	Start	End	Remark	
Energy [GeV]	2.5	20		
En. Spread RMS [%]	0.1	0.01	2.5 MeV	
Charge [nC]	1	1		
Peak Current [kA]	-	5×10 ⁻⁶		
$(\varepsilon_{N,x}, \varepsilon_{N,y})$ [µm×rad]	(1.4, 1.4)	(1.4, 1.4)	normalized emittance	
σ_{z} [μ m]	2×10 ³	24		
Acc. Gradient [MV/m]	-	23.6	ILC/TESLA like cavities	
Length [km]	-	3.4		
Rep. Rate [Hz]	-	10		

SPring-8

http://epaper.kek.jp/I96/PAPERS/TUP44.PDF

Beam Parameters	Start	End	Remark	
Energy [GeV]	?	1.15		
En. Spread RMS [%]	1	0.45		
Charge [nC]	3	3		
$(\varepsilon_{N,x}, \varepsilon_{N,y})$ [µm×rad]	(100,100)	(100,100)	normalized emittance	
σ_{z} [μ m]	2×10 ³	24		
Energy stability RMS [%]	-	0.02		
Length [km]	0.140			

Grenoble - ESRF

Storage Ring: http://www.esrf.eu/Accelerators/Performance/Parameters

Energy	GeV	6.03
Maximum Current	mA	200
Horizontal Emittance	nm	4
Vertical Emittance (*minimum achieved)	nm	0.025 (0.010*)
Coupling (*minimum achieved)	%	0.6 (0.25*)
Revolution frequency	kHz	355
Number of bunches		1 to 992
Time between bunches	ns	2816 to 2.82