CTC Activity Report

DR SC Wiggler	P. Ferracin et al.
Survey \& Alignment	H. Mainaud et al.
Quad Stability	K. Artoos et al.
Two-Beam module development	G. Riddone et al.
Warm Magnet Prototypes	M. Modena et al.
Beam Instrumentation	T. Lefevre et al.
Collimation, Masks and Beam Dumps	V. Vlachoudis et al.
Controls	M. Draper et al.
RF Systems (1 GHz klystrons \& DB cavities, DR RF)	E. Jensen et al.
Powering (Modulators, magnet converters)	D. Nisbet et al.
Vacuum Systems	C. Garion et al.
Magnetic stray Fields Measurements	S. Russenschuck et al.
DR Extraction System	M. Barnes et al.
Creation of a "CLIC technology center@CERN"	F. Bertinelli et al.

Two Beam module program

- Objectives
- assemble a 1-0-0-4 configuration in the lab for:
a) validation of integration studies; access to components; sequence of installation...
b) choice of materials and components (girder material...)
c) metrology before and after a transport
d) intense measurement program on thermal behaviour
e) showcase: the present idea is to show during a council week the module assembly in the entry hall of building 60
f) create a natural deadline for contributions from other activities: (vacuum, alignment, quad stabilization, magnets, instrumentation)

CLIC two-beam module

Baseline for
Conceptual
Design
Review

Two-beam module prototypes (B169) Assembly and Integration

Test modules in the LAB. 4 modules 1-0-0-4:

Type 0: assembly under way

Type 1: Integration study under way: MBQ stabilization unit needed to finalize MB supporting system.

Type 4: Integration study started: MBQ stabilization unit needed

Two-beam module prototypes (B169) Type 0

Two-beam module prototypes (B169)

 Type 0Final brazing of:

- 1st stack made of 4 AS: completed
- $2+2$ RF network for 1st TM0
- Manifolds for AS \#5

Accelerating structures

Two-beam module prototypes (B169) Type 0 RF system

Two-beam module prototypes (B169) Type 0 technical systems

Two-beam module prototypes (B169)

Validation tests

- The aim of prototype modules is to prove the feasibility of the proposed technical solutions for the different systems (pre-alignment, stabilization, cooling and vacuum systems)
- Alignment tests successfully performed
- Thermal tests to validate thermo-mechanical models previously developed: heaters will be used to reproduce heat dissipation due to RF power
- Thermal tests in preparation

IPAC12 paper

| 410 W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| My | My | My | My | My | syy | yy | my |
| | | | | | | | |

CLIC: Two-beam module prototype

 (CLEX) - Integration and procurementTest modules in the CLEX. Integration of the first TO is under way. Procurement of main components launched (girders and accelerating structures)

STATUS:

- AS: under fabrication
- PETS: under fabrication by CIEMAT
- DBQ: CockCroft of Danfysik, preliminary integration done. Final integration after the design of supporting system
- RF network: design and integration under way
- Slim tank: design and integration under way

Two-beam module prototype (CLEX) Accelerating structure

TD26 CC SiC (4 accelerating structures for the module to be tested with beam and RF in the CLIC Experimental Area)

Disks (about 30 each ac. structure)

Vacuum manifolds: housing damping material

Other technical systems: cooling, alignment integrated

- Metrology and Active Pre-alignment

Installation of 13 oWPS

13 oWPS installed, to be validated.
Alignment systems developed by NIKHEF (optical based Raschain)
integrated (installation foreseen in June 2012)
$\checkmark \quad$ Validation of the fiducialisation strategy under progress
$\checkmark \quad$ Software in order to acquire sensors and pilot actuators developed under labview ok.
$\checkmark \quad$ Control algorithms ready
$\checkmark \quad$ Micro triangulation developed and validated.
cWPS sensors and actuators validated (see next slide)
Articulation concept validated for both solutions of supporting (see next slide)

CLIC pre-alignment studies Latest results on the two beam modules prototypes...

Performance of the	
sensors	
Noise (peak to peak)	$5 \mu \mathrm{~m}$
Rtandard deviation over 15s	$0.6 \mu \mathrm{~m}$
Repeatability	$1 \mu \mathrm{~m}$
Reproductibility	$2-3 \mu \mathrm{~m}$
Interchangeability	$2-3 \mu \mathrm{~m}$

Performance of the articulation point

3 DOF linkage (Slave versus Master) Vertical Translation	Boostec	Micro-Contrôle
Horizontal Translation	$1-2 \mu \mathrm{~m}$	$3-5 \mu \mathrm{~m}$
Roll	$1-2 \mu \mathrm{~m}$	$2-3 \mu \mathrm{~m}$
	$1 \mu \mathrm{rad}$	$2 \mu \mathrm{rad}$

5DOF test bench reinstalled in ISR 8.

5DOF repositioning in less than 3 iterations below $1 \mu \mathrm{~m}$

Development of a smaller cam mover (for type 1 MB quad) under progress

- Quadrupole Stability

Stabilization on Type 1 magnet

- Water cooling $4 \mathrm{I} / \mathrm{min}$
- With magnetic field on
- With hybrid circuit

Figure	Value
R.m.s @ 1 Hz magnet	0.5 nm (during the day)
R.m.s @ 1 Hz ground	6.3 nm
R.m.s. attenuation ratio	~ 13
R.m.s @ 1 Hz objective	$\mathbf{1 . 5 ~ n m}$

Positioning + Stab. test bench
X-y guide prototype operational
$\overline{\text { saclay }}$

- X-y guide «l blocks ॥ roll + longitudinal
- Increases lateral stiffness by factor 500, increases band width without resonances to $\sim 100 \mathrm{~Hz}$
- Introduces a stiff support for nano metrology
- cross check with interferometer

- Contact with RAD WG
- SEU tests in the H4IRAD test stand at CERN planned for August
- Several components under evaluation. Larger community working on same problems
- Sensitivity simulation of controller to changes in the components
- remark from RAD WG: Essential for CLIC: obtain more complete and sure expected radiation values.
- Available shielding for electronics in the CLIC tunnel ????

Courtesy S. Mallows

Update on Final Focus stabilisation studies in Annecy

Andrea JEREMIE

FF stabilisation results

Attenuation up to 50dB between $1,5-100 \mathrm{~Hz}$

RMS ground at $4 \mathrm{~Hz}: 5 \mathrm{~nm}$ RMS on foot at $4 \mathrm{~Hz}: 0,6 \mathrm{~nm}$ (FF aim: $0,2 \mathrm{~nm}$ at 4 Hz) RMS ratio: 8,3

EKnerinnental setun

Matlab and dSPACE ControlDesk For monitoring and analysis

dSPACE

Real time hardware for Rapid Control Prototyping

Sensor type	Electromagnetic Geophone	Piezoelectric Accelerometer
Model	GURALP CMG-6T	Wilcoxon 731A
Company	Geosig	MEGGITT
Output signal	Velocity $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$	Z Acceleration
Sensitivity	$2398 \mathrm{~V} / \mathrm{m} / \mathrm{s}$	$10 \mathrm{~V} / \mathrm{g}$
Bandwidth [Hz]	$[0.033-100]$	$[0.05-500]$

Amplifiers, filters input/output board for signal conditioning

Active foot with sensors

- Magnets

Hybrid QDO short prototype results

CLIC QDO Main Parameters		Prototype (Iron yoke length of 100 mm)	Nominal magnet (Iron yoke length of $\sim 2500 \mathrm{~mm}$)
Max. Gradient (computed)	[T/m]	552	615
Magnet aperture	[mm]	8.25	8.25
Tunability		32 $\div 100 \%$	32 $\div 100 \%$
GEOMETRY			
Total length	[mm]	273	2600
Width	[mm]	468	518
Height	[mm]	424	424
Total mass	kg	~ 200	~ 2700
COILS			
Conductor size	[mm]	4×4	4x4
N. of turns		324 (18×18)	324 (18x18)
Average turn length	[m]	0.586	5.786
Total coils (4) mass	[kg]	107.2	1060.8
ELECT.PARAMETERS			
Ampereturns per pole	[A]	5000	5000
Current	[A]	15.4	15.4
Current density	[$\mathrm{A} / \mathrm{mm}^{2}$]	1	1
Total resistance	[mOhm]	896	8838
Total voltage	[V]	13.8	136.4
Total power	[W]	213	2150

ASTeC Report for CLIC-UK

Jim Clarke on behalf of all ASTeC \&
Technology Department staff contributing to CLIC-UK
STFC Daresbury Laboratory, UK

CERN-UK Review, 9th May 2012

Tuneability

Low energy end more demanding in terms of adjustable range of magnet

High Strength Quad Design

Stroke $=64 \mathrm{~mm}$

Basic Engineering Concept

Engineering

Fully Open

PM Block secured to steel yoke

Science \& Technology Facilities Council

Permanent Magnets

- Instrumentation

Cold test of the cavity BPM prototype

Dipole-mode "BPM" resonator \& waveguide

- Stainless steel prototype cavity BPM for CTF3
- Cold test carried out before brazing - mechanical improvement identified
- Dipole mode frequency within 5 MHz of the design value of 15 GHz
- Q-values and coupling close to expected (~ 250)
- Reference cavity: frequency off by +2 GHz , Reduced the diameter by 0.98 mm to correct it
- Cavity has been successfully brazed and leak-tested
- Next steps: vacuum test with feedthroughs, repeat RF measurements
- Foreseen to be tested in TBTS@CTF3

Frequency vs. temperature variation: $250 \mathrm{kHz} / \mathrm{K}$

Cold test of the Stripline BPM prototype

Striplines BPM for the CLIC decelerator

- High current 100A - high bunch frequency 12 GHz
- In the vicinity of an RF strucutre producing 100MW @ 12 GHz
- Temporal resolution of 10 ns
- 2 micron resolution over an aperture of 23 mm (accurate calibration)
- Transverse mode damped by SiC absorber

Stripline BPM has been assembled

Observing Optical Diffraction Radiation angular distribution to measure Beam size

Integration of Chamber in the L3 straight section @ CESR-TA

Simulation of the optical distribution

CLIC E-O bunch temporal profile monitor

1. Califes Facility - E-O Bunch Profile Monitor using spectral decoding

Development of a sub-ps time resolution bunch length monitor

1. Overall EO system for CTF3 is designed
2. Laser system and optics arrived
3. Control system design completed, all cables and optical fibres installed
4. Optical synchronization system designed, transfer lines for laser and OTR designed
5. Laser laboratory under preparation, camera and motors being delivered
6. Two vacuum chambers are being designed

2. Activities at STFC Daresbury Laboratory

Spectral Upconversion Techniques - Convert the far-IR \rightarrow mid-IR spectrum to an optical spectrum

- Bandwidth reduction $1 \mathrm{~mm}-10 \mu \mathrm{~m} \rightarrow 800 \mathrm{~nm}-740 \mathrm{~nm}$

2011/12 experiments at Daresbury (Manchester Univ collaborating) Laser-generated THz pulses as mimic of electron bunch

- Experiments underway May 2012

CLIC E-O bunch temporal profile monitor

3. Activities at University of Dundee

EO Detection solution in thin films \& 2D structures
Nano-structured materials
Materials, Photonics \& Smart Systems (MAPS) Group at Dundee Fabrication \& Applications of Nanocomposites

3 separate nanosecond laser systems (wavelengths - 355, 532 and 1064 nm) in place for materials processing, during 2011

Picosecond (Coherent Talisker ULTRA 355-04) system installed May 2012
Operates at same 3 wavelengths
Pulsewidth < 15ps with an average power of up to 4 W at $355 \mathrm{~nm}, 8 \mathrm{~W}$ at 532 nm , and 16 W at 1064 nm .

First tests on new system planned for early June 2012

CLIC Beam loss monitoring

1. CDR Baseline Choice: Ionization Chambers

- Adequate (dynamic range, sensitivity), BUT expensive, 1 per quadrupole means $>50,000$.
- Investigate Alternative Technologies for the Two Beam Modules e.g. Cherenkov Fibers
- REF: CLIC BI CDR chapter \& IPAC 2010 WEPEB07 4

2. Development of Analytical Model for Cherenkov Light Signal in Fibers

Must Consider probability of :
1.trapping of produced photons inside the fiber, P_{t} 2.trapped photons exiting the fiber end face, P_{e}
3.trapped photons exiting the end face within acceptance cone
$P_{e, a}$

$$
P_{e, \alpha} \propto \cos ^{-1}\left[\frac{\beta \sqrt{n_{c o}{ }^{2}-N A}-\cos \alpha}{\sin \alpha \sqrt{\beta^{2} n_{c o}{ }^{2}-1}}\right] \quad N A=\sqrt{n^{2}{ }_{c o}-n^{2}{ }_{c l}}
$$

Several papers already exist (but conflicting theories) \rightarrow Developed our own model ~ 200 lines code (J.V

- Signal depends on:
- Angle of incoming radiation alpha α,
- Velocity of charged particle beta: β
- Refractive indices of fiber core and claddin

- Fiber diameter

3. Verification of Model for Cherenkov Light Signal in Fibers

- Experiments at CERN Test Beam Lines (T9 East Hall, H6A, SPS North Area)
- Good Agreement between Experimental and Model

- (FLUKA simulations for Optical photon production also in good agreement with Model / experimental data)
- REF: Masters thesis (May 2012) by J. Van Hoorne,
- \& Journal papers (hopefully) to be published.

CLIC Beam loss monitoring

4. Determine Cherenkov Fiber Signal for CLIC Two Beam Modules
5. FLUKA to simulate loss scenarios and calculate angular and velocity distribution of secondary particle shower at fiber locations

FLUKA Represnetion of Two Beam Modules Beamlone
Components. Charged particle distributions calculated at blue lines.
2. Use analytical model to predict signal (or 'trapped photons') for a given fiber type and various loss scenarios. Determined dynamic range, sensitivity requirements of photon detectors.

Example : Loss at 2.4 GeV :

- REF: webpc171, IPAC 2011

CLIC Beam loss monitoring

Longitudinal Position Resolution - Fibers

- 100 m fibers, Long bunch trains $(60 \mathrm{~m})$
- NOT a problem for machine protection purposes: Onset of a destructive loss always detected
- Location of onset of destructive loss can be found with rise time of photo-detector signal
- Standard Operational Losses: Some localised detectors per fiber could be used to measure the loss structure over a train and compared with signal from fiber to determine loss structure over 100 m accelerator. ..

Cross Talk (All Monitor Types)

- Desirable to distinguish between a failure loss from each of the beams
- Spatial Distribution of prompt Absorbed Dose (Gy) from FLUKA Simulations:

Drive Beam: 1.0\% of bunch train hits aperture restriction

Main Beam: 0.01\% of bunch train hits aperture restriction rain his aperture restricion

- Loss of 1.0% in DB provokes similar signal as a loss of 0.01% of $M B$ in region close to $M B$ quadrupole.
- Compare signals from both fibers each side to distinguish Main and Drive Beam losses.
- In any case: NOT a Machine Protection Issue - Dangerous loss would never go unnoticed

Fibers at CTF3

- Installation of fiber at TBL (2012)
- Achievable longitudinal position resolution, with long bunch trains using 'forward' (downstream) and 'backward' (upstream) trapped photons
- Comparison of Fiber with localized detectors (ACEMs)
- Suitability of Silicon Photomultipliers as a photodetector for fibres
- Preliminary Results at CLEX(TBTS) (in 2011) Used for:
- First observation of Cherenkov Signal from Fiber
- See whether cross talk can be studied at TBTS (it probably can't - probe beam too low instensnity)
- Decide on diameter for fibers to be used in CLEX Hall. (< 200um suffuiecient)
- Confirm production of 'upstream' and 'downstream' photons in fiber

- Damping Ring Extraction Equipment - Stripline kickers
- Pulser (Inductive Adder)

Present Status of Inductive Adder (IA) Development

$>$ Components and devices ordered for prototyping an IA
$>$ Tests of main components on-going or scheduled:
$>$ Pulse Capacitors
> Semiconductor Switches and Gate Drivers
> Transformer cores (April, by CERN TE/MSC?)
$>$ 3-D modelling of the IA stack commenced
> Mechanical and electrical design of the IA stack: housing of transformer cores, feedthroughs, PCBs, etc.

Present Status of Inductive Adder Development \& Planning

$>$ The stripline odd mode characterisitic impedance may not be matched to the impedance of the inductive adder, resulting in increased settling time for ripple and hence increased demands on the IA.
\rightarrow Also the IA design for the CLIC 1 GHz baseline $\rightarrow \boldsymbol{v}$ is more demanding than for the 2 GHz option.
$>$ In addition, although the IA design for CLIC DR is the main goal of the current $R \& D$, the prototype IA is also being designed to meet the specifications of ATF test facilities (e.g. increased voltage w.r.t. CLIC DR).
>2012 goal is to have tested 2 or 3 layers of IA and ordered significant quantity of components for one-stack.
>2013 goal is to build and test one stack and order components for a 2 nd stack.

Settling time of the kicker voltage pulse as function of stripline impedance. IA = CVS, Delay of IA + cable delay = 10 ns; time delay of stripline $=10 \mathrm{~ns} ;$ load $=50 \Omega$.

>2014 goal is to test in a facility (with beam).

Status Of Development of Striplines
$\checkmark \quad$ Cross section of striplines studies to achieve:

- Characteristic impedance $=50 \Omega$
- Excellent field homogeneity
$\checkmark \quad$ Possibility to test CLIC DR striplines in ATF \& ALBA ALBA parameters presently being defined
$\checkmark \quad$ Beam coupling impedance:
Presently being studied

Present Stripline Planning

1) Complete the stripline design, by June 2012:
a) 2D kicker design to optimize the cross section of ATF2/ALBA stripline prototype;
b) 3D design to study the integrated field homogeneity and beam coupling impedance.
2) Beam dynamics study, to analyze the impact of the kicker on the beam behavior (ATF2 and CLIC).
3) Manufacturing of the stripline kicker, from June to December 2012.
4) Calibration and lab test at CERN, from January to March 2013. It will include:
a) Verification of dimensions, including tapering;
b) Vacuum compatibility;
c) Longitudinal and transverse beam coupling impedance measurements;
d) Field homogeneity measurements.
5) Possible installation of striplines at ALBA, from June to September 2013
6) Possible test of stripline at ALBA, from October to December 2013.
7) Installation of striplines at ATF2, from June to September 2014?
8) Test of striplines at ATF2, with inductive adder, from October to December 2014?

Powering
 - Modulator Development

CLIC stüdies \& Klystron modulators specs

- Technology challenges

Pulse to pulse reproducibility: 10 to 100ppm

Reproducibility
Modulator and voltage measurement reproducibility hever achieved before!

AC power quality optimization More than 1600 modulators pulsing synchronously! Utility grid power fluctuation minimized $(\sim 1 \%)-$ tough charger design

Machine availability With more than 1600 modulators, reliability, modularity \& redundancy must be optimized for maximum accelerator availability

> Modulator topology selection considering:
> - Efficiency maximization (max. power limited)
> - Reproducibility
> - Constant power consumption
> - Satisfactory accelerator availability

Need for a global approach! Different solutions must be explored (transformer based, fully solid state, HV \& LV solutions)

－Survey of European Universities and institutions

	Application			PFS Development			Capacitor Charger Development	
Universities	HV	short pulses	Long pulses	pulse Transfo	bouncer	SW stack	AFE	Resonant topologies
Strathclyde University（UK）	『	マ						
Loughborough University（UK）	マ	マ		マ		マ		
Ecole Polytechnique Paris	マ	マ						
Research Centre Karlsruhe（DE）	■	■	∇			\square		マ
Université de Pau（FR）	V	『				マ		
Eindhoven（NL）	V	च		\square		\square		
Oxford（UK）	\square			च				
EPFL（CH）							\square	\square
ETH（CH）	\square	\square	\square	\square	■	\square	\square	\square
Nottingham（UK）	V		V	V		■	V	V
Institutions	HV	short pulses	Long pulses	pulse Transfo	bouncer	SW stack	AFE	Resonant topologies
Desy（DE）	■	\square	マ		\square	■		マ
PSI（CH）	■	च				■		
ESS（SE）	V		V					

Preparation of collaboration agreements with ETHZ，Nottngham，Laval （Canada）and SLAC in preparation

Summary

- Wide-spread technology development program for CLIC in place. Not only paper studies, but to a large fraction targeting real hardware and functional prototypes:
- Will serve for beam tests (CTF3, ATF, CESR-TA...)
- are qualified in laboratory measurements
- will become part of future installations (DB injector)
- Based on a large collaborative efforts
- Major milestone in 2012/2013:
- achievement of full TBA modules in the lab including measurement programs
- planned review of TBA modules in spring 2013
- Personal Objective for the rest of 2012:
- Create additional effort for magnetic measurements and for fs-timing distribution

