



## The Measurement of Vγ Cross Sections at 7 TeV in CMS

Syue-Wei Li National Central University, Taiwan

On behalf of CMS Collaboration



### Outline



- Motivation
- Measurement of Wy cross section with  $E_T^{\gamma} > 10$  GeV and  $\Delta R(\ell, \gamma) > 0.7$
- Measurement of Zy cross section with  $E_T^{\gamma} > 10$  GeV,  $\Delta R(\ell, \gamma) > 0.7$ , and  $M_{\ell} > 50$ GeV
- Summary



### Motivation



- The physics with diboson (WW, WZ, W $\gamma$ , Z $\gamma$ ) in the final state is an important test of Standard Model at high energy
  - ◆ Background for the new physics
  - **♦** Signature for new physics
  - ♦ Higgs, SUSY, Technicolor, Graviton .....
- The measurement of triple gauge couplings (TGCs) provides the search for new physics
  - $\bigstar$  Anomalous VVV (V= W/Z/γ) TGCs would lead different cross section and kinematic in diboson productions









## Wy and Zy Signatures



- Use leptonic W and Z boson decays
  - ♦ Four signatures: evγ, μνγ, eeγ, and μμγ
- Three production mechanisms
  - ◆ Initial state radiation (ISR), final state radiation (FSR), and triple gauge coupling (TGC)







 $(ZZ\gamma, Z\gamma\gamma)$  are forbidden in SM)

- ◆ FSR process can provide pure photon control sample
  - ▶ Photon energy scale and resolution
  - Photon selection efficiency
  - Photon signal template for background estimation using template method





# Measurement of Wy Cross Section with $E_T^{\gamma} > 10$ GeV and $\Delta R(\ell, \gamma) > 0.7$ with 36 pb<sup>-1</sup>

$$\sigma \times \mathcal{BR}\left(W\gamma \to l\nu\gamma\right) = \frac{N_S}{\int \mathcal{L} \; dt \times \mathcal{A} \times \epsilon_{MC,W\gamma \to \ell\nu\gamma} \times \rho_{eff}},$$

- $\rightarrow$   $N_S$ : the number of estimated signal yields
- → A: the fiducial and kinematic acceptance
- $\rightarrow$   $\varepsilon_{MC}$ : the selection efficiency from MC simulation
- $\rightarrow$   $\rho_{eff}$ : the correction factor on MC efficiency
- → ∫∠dt: integrated luminosity

- **♦** Outline:
  - ♦ Resulting plots
  - **♦** Background estimation
  - **♦** Uncertainties
  - **♦** Estimated cross section



### Event Selection



- **HLT** requirement:
  - ◆ Unprescaled single-electron triggers Unprescaled muon-electron triggers
- One good electron:

 $W\gamma \rightarrow ev\gamma$ 

- ♦  $P_T > 20 \text{ GeV and } |η| < 2.5$
- ◆ Pass EWK electron selection
- ◆ Match to HLT object
- ❖ Veto 2nd electron with P<sub>T</sub> > 20 GeV

One good muon:

Wγ→μνγ

- ♦  $P_T > 20 \text{ GeV and } |η| < 2.1$
- ◆ Pass EWK muon selection
- ◆ Match to HLT object
- Veto 2nd muon with  $P_T > 10$  GeV and  $|\eta| < 2.4$

- $\bigstar$  MET > 25 GeV
- Select leading good photon:
  - ♦  $E_T > 10 \text{ GeV and } |η| < 2.5$
  - **♦** Pass photon selection
  - $ightharpoonup \Delta R(\ell, \gamma) > 0.7$



### Backgrounds



- The major background is from W+jets:
  - ◆ Use "Ratio method" to estimate the photons faked from jets and use "Shape method" to cross check
- **Other backgrounds:** 
  - ◆ An electron is misidentified as a photon
  - $\bullet$  W(τν<sub>τ</sub>)γ: τ decays to ev or  $\mu\nu$
  - $\bigstar$   $Z(\mathcal{U})\gamma$ : one lepton is not detected by detector
  - ◆ These are estimated using MC simulation



#### Background Estimation - Ratio Method

- は大会中立
- Assume the ratio of isolated fake photon to non-isolated fake photon is the same for both V+jets and QCD samples
- Use QCD enriched sample to measure the ratio of isolated to non-isolated fake photons
- Estimated background =

$$N_{V+\text{jets}} = \left(\frac{N_{\text{isolated }\gamma}}{N_{\text{non-isolated }\gamma}}\right)_{QCD} \times N_{V+\text{non-isolated }\gamma}$$





### Background Estimation - Shape Method

- 大學中立個
- Choose the shape of lateral energy deposition as a discriminant
- Signal templates are obtained from MC simulation
  - ♦ Use Zee data to extract correction
- Background templates are completely obtained from data-driven
  - ◆ Inverting isolation (sideband)
- The fit is performed using a binned extended maximum likelihood







### Resulting Plots



Background estimation from shape method agrees with that from ratio method





### Resulting Plots



- The tree-level Wγ production process interferes with each other, resulting in a radiation amplitude zero (RAZ) in the angular distribution of the photon
- $\clubsuit$  Use charge-signed rapidity (Q<sub>1</sub>×Δη) to observe RAZ
- In the SM, the location of dip minimum is located at 0 for pp collisions
- The agreement between backgroundsubtracted data and MC prediction is reasonable, with Kolmogorov-Smirnov test result of 57 %





## Summary of Uncertainties

林中中立

- Three main categories of systematic uncertainty
  - ◆ Acceptance, efficiency, and background estimation

| $W\gamma \to e\nu\gamma$                        | $W\gamma \rightarrow \mu\nu\gamma$ |  |
|-------------------------------------------------|------------------------------------|--|
| Effect on $A \cdot \epsilon_{MC}$               |                                    |  |
| 2.3%                                            | 1.0%                               |  |
| 0.3%                                            | 0.2%                               |  |
| 4.5%                                            | 4.2 %                              |  |
| 0.4%                                            | 0.7%                               |  |
| 2.7%                                            | 2.3%                               |  |
| 2.0%                                            | 2.0%                               |  |
| 6.1%                                            | 5.2%                               |  |
| Effect on $\epsilon_{ m data}/\epsilon_{ m MC}$ |                                    |  |
| 0.1%                                            | 0.5%                               |  |
| 0.8%                                            | 0.3%                               |  |
| 0.7%                                            | 1.0%                               |  |
| 1.2%                                            | 1.5%                               |  |
| 1.6%                                            | 1.9%                               |  |
| 6.3%                                            | 6.4%                               |  |
|                                                 | Effect of 0.1% 0.8% 0.7% 1.2% 1.6% |  |



### Cross-section Measurement

1t

- Theoretical NLO cross section:  $49.4 \pm 3.8$  pb
- The estimated results:
  - ♦ Wγ→evγ with  $E_T^{\gamma} > 10$  GeV and  $\Delta R(\ell,\gamma) > 0.7$ :  $57.1 \pm 6.9$  (stat.)  $\pm 5.1$  (syst.)  $\pm 2.3$  (lumi.) pb
  - W $\gamma \rightarrow \mu \nu \gamma$  with  $E_T^{\gamma} > 10$  GeV and  $\Delta R(\ell, \gamma) > 0.7$ :  $55.4 \pm 7.2$  (stat.)  $\pm 5.0$  (syst.)  $\pm 2.2$  (lumi.) pb
  - W $\gamma \rightarrow \ell \nu \gamma$  ( $\ell = e/\mu$ ) with  $E_T^{\gamma} > 10$  GeV and  $\Delta R(\ell, \gamma) > 0.7$ :  $56.3 \pm 5.0$  (stat.)  $\pm 5.0$  (syst.)  $\pm 2.3$  (lumi.) pb







# Measurement of Z $\gamma$ Cross Section with $E_{T}^{\gamma} > 10$ GeV, $\Delta R(\ell, \gamma) > 0.7$ and $M_{\ell} > 50$ GeV with 36 pb<sup>-1</sup>

$$\sigma_{Z\gamma \to ll\gamma} = \frac{N_{observed} - N_{background}}{A \cdot \epsilon_{MC,Z\gamma \to ll\gamma} \cdot \rho_{eff} \cdot \int \mathcal{L} \, dt'}$$

- $\rightarrow$   $N_{observed}$ : the number of observed yields
- $\rightarrow$   $N_{background}$ : the number of background yields
- → A: the fiducial and kinematic acceptance
- $\rightarrow$   $\varepsilon_{MC}$ : the selection efficiency from MC simulation
- $\rightarrow$   $\rho_{eff}$ : the correction factor on MC efficiency
- → \( \mathcal{L}\) dt: integrated luminosity

- **♦** Outline:
  - ♦ Resulting plots
  - **♦** Background estimation
  - **♦** Uncertainties
  - **♦** Estimated cross section



### Event Selection



- **HLT** requirement:
  - ◆ Unprescaled single-electron triggers Unprescaled muon-electron triggers
- Two good electrons:

 $Z\gamma \rightarrow ee\gamma$ 

- ♦  $P_T > 20 \text{ GeV and } |η| < 2.5$
- ◆ Pass EWK electron selection
- $M_{ee} > 50 \text{ GeV}$

Two good muons:

Ζγ→μμγ

- ♦  $P_T > 20 \text{ GeV and } |η| < 2.4$
- **♦** Pass EWK muon selection
- $M_{\mu\mu} > 50 \text{ GeV}$

- Select leading good photon:
  - ♦  $E_T > 10 \text{ GeV and } |η| < 2.5$
  - ◆ Pass photon selection
  - $\triangle R(\ell, \gamma) > 0.7$



### Resulting Plots



Background estimation from shape method agrees with that from ratio method







## Summary of Uncertainties

- Three main categories of systematic uncertainty
  - ◆ Acceptance, efficiency, and background estimation

|                                                            | $Z\gamma \rightarrow ee\gamma$                  | $Z\gamma \rightarrow \mu\mu\gamma$ |
|------------------------------------------------------------|-------------------------------------------------|------------------------------------|
| Source                                                     | Effect on $A \cdot \epsilon_{\text{MC}}$        |                                    |
| Lepton energy scale                                        | 2.8%                                            | 1.5%                               |
| Lepton energy resolution                                   | 0.5%                                            | 0.4%                               |
| Photon energy scale                                        | 3.7%                                            | 3.0%                               |
| Photon energy resolution                                   | 1.7%                                            | 1.4%                               |
| Pile-up                                                    | 2.3%                                            | 1.8%                               |
| PDFs                                                       | 2.0%                                            | 2.0%                               |
| Total uncertainty on $A \cdot \epsilon_{\mathrm{MC}}$      | 5.8%                                            | 4.3%                               |
|                                                            | Effect on $\epsilon_{ m data}/\epsilon_{ m MC}$ |                                    |
| Trigger                                                    | < 0.1%                                          | < 0.1%                             |
| Lepton identification and isolation                        | 1.1%                                            | 1.0%                               |
| $E_{\rm T}^{\rm miss}$ selection                           | N/A                                             | N/A                                |
| Photon identification and isolation                        | 1.0%                                            | 1.0%                               |
| Total uncertainty on $\epsilon_{ m data}/\epsilon_{ m MC}$ | 1.6%                                            | 1.5%                               |
| Background                                                 | 9.3%                                            | 11.4%                              |



### Cross-section Measurement

- Theoretical NLO cross section:  $9.6 \pm 0.4$  pb
- The estimated results:
  - $\Rightarrow$  Z $\gamma$  $\rightarrow$ ee $\gamma$  with E $_{\rm T}^{\gamma}$  > 10 GeV,  $\Delta$ R(e, $\gamma$ ) > 0.7, and M $_{\rm ee}$  > 50 GeV: 9.5  $\pm$  1.4 (stat.)  $\pm$  0.7 (syst.)  $\pm$  0.4 (lumi.) pb
  - $ightharpoonup Z\gamma 
    ightharpoonup \mu \gamma$  with  $E_T^{\gamma} > 10$  GeV,  $\Delta R(\mu, \gamma) > 0.7$ , and  $M_{\mu\mu} > 50$  GeV:  $9.2 \pm 1.4$  (stat.)  $\pm 0.6$  (syst.)  $\pm 0.4$  (lumi.) pb
  - $ightharpoonup Z\gamma 
    ightharpoonup \ell\ell=e/\mu$ ) with  $E_T^{\gamma} > 10$  GeV,  $\Delta R(\ell,\gamma) > 0.7$ , and  $M_{\ell\ell} > 50$  GeV:  $9.4 \pm 1.0$  (stat.)  $\pm 0.6$  (syst.)  $\pm 0.4$  (lumi.) pb





### Summary



- **The measurements of Wy and Zy cross sections are performed using**  $36 \text{ pb}^{-1}$  data.
- ♦ Wγ→ℓνγ (ℓ=e/μ) with  $E_{T}^{\gamma} > 10$  GeV and  $\Delta R(ℓ, γ) > 0.7$ :  $56.4 \pm 5.0$  (stat.) ± 5.0 (syst.) ± 2.3 (lumi.) pb
- $\Delta Z\gamma \rightarrow \ell\ell\gamma$  ( $\ell=e/\mu$ ) with  $E_{T}^{\gamma} > 10 GeV$ ,  $\Delta R(\ell,\gamma) > 0.7$ , and  $M_{\ell\ell} > 50 GeV$ :  $9.4 \pm 1.0$  (stat.)  $\pm 0.6$  (stat.)  $\pm 0.4$  (lumi.) pb
- All results are consistent with the standard model predictions.
- The results with 2011 full data (5 fb<sup>-1</sup>) are being finalized.









### Data and MC samples



- **A** Data:
  - ♦ Integrated luminosity = 36 pb<sup>-1</sup>

| CMS Run                                | Dataset Name                           | Used by                                                                                |  |  |  |
|----------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Data samples                           |                                        |                                                                                        |  |  |  |
| 2010A                                  | /EG/Run2010A-Nov4ReReco_v1/RECO        | $W\gamma \rightarrow e\nu + \gamma$ , $Z\gamma \rightarrow ee + \gamma$                |  |  |  |
| 2010B                                  | /Electron/Run2010B-Nov4ReReco_v1/RECO  | $W\gamma \rightarrow e\nu + \gamma$ , $Z\gamma \rightarrow ee + \gamma$                |  |  |  |
| 2010A                                  | /Mu/Run2010A-Nov4ReReco_v1/RECO        | $\mid W\gamma  ightarrow \mu  u + \gamma$ , $Z\gamma  ightarrow \mu \mu + \gamma \mid$ |  |  |  |
| 2010B                                  | /Mu/Run2010B-Nov4ReReco_v1/RECO        | $W\gamma \to \mu\nu + \gamma, Z\gamma \to \mu\mu + \gamma$                             |  |  |  |
| Samples used for background estimation |                                        |                                                                                        |  |  |  |
| 2010A                                  | /JetMETTau/Run2010A-Nov4ReReco_v1/RECO | all channels                                                                           |  |  |  |
| 2010A                                  | /JetMET/Run2010A-Nov4ReReco_v1/RECO    | all channels                                                                           |  |  |  |
| 2010B                                  | /Jet/Run2010B-Nov4ReReco_v1/RECO       | all channels                                                                           |  |  |  |

#### **M**C:

- ◆ Fall10 MC samples
- ◆ Signal samples are generated using Madgraph

| Process                         | $\sigma_{MadGraph}$ , pb | $\sigma_{NLO}$ , pb | Dataset Name                     |  |
|---------------------------------|--------------------------|---------------------|----------------------------------|--|
|                                 |                          |                     | (GEN-SIM-RECO data tier)         |  |
| $W \rightarrow e \nu + \gamma$  | 100                      | 121.24              | /WGToENuG_TuneD6T_7TeV-madgraph  |  |
| $W \rightarrow \mu\nu + \gamma$ | 100                      | 121.24              | /WGToMuNuG_TuneD6T_7TeV-madgraph |  |
| $Z \rightarrow ee + \gamma$     | 27                       | 33.73               | /ZGToEEG_TuneD6T_7TeV-madgraph   |  |
| $Z \rightarrow \mu\mu + \gamma$ | 27                       | 33.73               | /ZGToMuMuG_TuneD6T_7TeV-madgraph |  |

- ◆ Background samples: Wjets, Zjets, WW, WZ, ZZ, QCD, PhotonJet, etc.
- ♦ Detail list is in backup



### MC Background Samples



| Process                                       | σ, pb                  | Dataset Name (GEN-SIM-RECO data tier)          |
|-----------------------------------------------|------------------------|------------------------------------------------|
| $W \rightarrow l\nu + jets$                   | 31314                  | /WJetsToLNu_TuneZ2_7TeV-madgraph-tauola        |
| $Z \rightarrow ll + jets$                     | 3048                   | /DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola   |
| $t\bar{t}+jets$                               | 157.5                  | /TTJets_TuneZ2_7TeV-madgraph-tauola            |
| WW                                            | 43                     | /WWtoAnything_TuneZ2_7TeV-pythia6-tauola       |
| WZ                                            | 18.2                   | /WZtoAnything_TuneZ2_7TeV-pythia6-tauola       |
| ZZ                                            | 5.9                    | /ZZtoAnything_TuneZ2_7TeV-pythia6-tauola       |
| $\gamma + jets(\hat{p_T}: 0-15)$              | $8.420 \times 10^{7}$  | /G_Pt_0to15_TuneZ2_7TeV_pythia6                |
| $\gamma + jets(\hat{p_T}: 15-30)$             | $1.717 \times 10^5$    | /G_Pt_15to30_TuneZ2_7TeV_pythia6               |
| $\gamma + jets(\hat{p_T}: 30-50)$             | $1.669 \times 10^4$    | /G_Pt_30to50_TuneZ2_7TeV_pythia6               |
| $\gamma + jets(\hat{p_T}: 50-80)$             | $2.722 \times 10^{3}$  | /G_Pt_50to80_TuneZ2_7TeV_pythia6               |
| $\gamma + jets(\hat{p_T}: 80-120)$            | $4.472 \times 10^{2}$  | /G_Pt_80to120_TuneZ2_7TeV_pythia6              |
| $\gamma + jets(\hat{p_T}: 120 - 170)$         | $8.417 \times 10^{1}$  | /G_Pt_120to170_TuneZ2_7TeV_pythia6             |
| $\gamma + jets(\hat{p_T}: 170 - 300)$         | $2.264 \times 10^{1}$  | /G_Pt_170to300_TuneZ2_7TeV_pythia6             |
| $\gamma + jets(\hat{p_T}: 300 - 470)$         | 1.493                  | /G_Pt_300to470_TuneZ2_7TeV_pythia6             |
| $QCD(\hat{p_T}: 5-15)$                        | $3.675 \times 10^{10}$ | /QCD_Pt_5to15_TuneZ2_7TeV_pythia6              |
| $QCD(\hat{p_T}: 15-30)$                       | $8.159 \times 10^{8}$  | /QCD_Pt_15to30_TuneZ2_7TeV_pythia6             |
| $QCD(\hat{p_T}: 30-50)$                       | $5.312 \times 10^{7}$  | /QCD_Pt_30to50_TuneZ2_7TeV_pythia6             |
| $QCD(\hat{p_T}: 50 - 80)$                     | $6.359 \times 10^{6}$  | /QCD_Pt_50to80_TuneZ2_7TeV_pythia6             |
| $QCD(\hat{p_T}: 80-120)$                      | $7.843 \times 10^5$    | /QCD_Pt_80to120_TuneZ2_7TeV_pythia6            |
| $QCD(\hat{p_T}: 120-170)$                     | $1.151 \times 10^{5}$  | /QCD_Pt_120to170_TuneZ2_7TeV_pythia6           |
| $QCD(\hat{p_T}: 170 - 300)$                   | $2.426 \times 10^4$    | /QCD_Pt_170to300_TuneZ2_7TeV_pythia6           |
| $QCD(\hat{p_T}: 300-470)$                     | $1.168 \times 10^{3}$  | /QCD_Pt_300to470_TuneZ2_7TeV_pythia6           |
| $QCDEMEnriched(\hat{p_T}: 20-30)$             | $2.4544 \times 10^6$   | /QCD_Pt-20to30_EMEnriched_TuneZ2_7TeV-pythia6  |
| $QCDEMEnriched(\hat{p_T}: 30-80)$             | $3.8662 \times 10^6$   | /QCD_Pt-30to80_EMEnriched_TuneZ2_7TeV-pythia6  |
| $QCDEMEnriched(\hat{p_T}: 80-170)$            | $1.395 \times 10^{5}$  | /QCD_Pt-80to170_EMEnriched_TuneZ2_7TeV-pythia6 |
| $QCDMuEnriched(\hat{p_T} > 20, p_{T\mu} > 15$ | 84679.3                | /QCD_Pt-20_MuEnrichedPt-15_TuneZ2_7TeV-pythia6 |
| $QCDBCtoE(\hat{p_T}: 20-30)$                  | $1.3216 \times 10^5$   | /QCD_Pt-20to30_BCtoE_TuneZ2_7TeV-pythia6       |
| $QCDBCtoE(\hat{p_T}: 30-80)$                  | $1.36804 \times 10^5$  | /QCD_Pt-30to80_BCtoE_TuneZ2_7TeV-pythia6       |
| $QCDBCtoE(\hat{p_T}: 80-170)$                 | $9.36 \times 10^{3}$   | /QCD_Pt-80to170_BCtoE_TuneZ2_7TeV-pythia6      |



### Electron Selection



- Pass identification, isolation and conversion rejection cuts
- **Chose two working points, WP80 for Wγ and WP95 for Zγ**
- ❖ WP80 is the same in VBTF

|                           | WP95   |        | WP80   |        |
|---------------------------|--------|--------|--------|--------|
|                           | Barrel | Endcap | Barrel | Endcap |
| $I_{ m trk}/E_T$          | 0.15   | 0.08   | 0.09   | 0.04   |
| $I_{\mathrm{ECAL}}/E_{T}$ | 2.0    | 0.06   | 0.07   | 0.05   |
| $I_{ m HCAL}/E_T$         | 0.12   | 0.05   | 0.10   | 0.025  |
| Missing hits $\leq$       | 1      | 1      | 0      | 0      |
| Dcot                      | _      | _      | 0.02   | 0.02   |
| Dist                      | _      | _      | 0.02   | 0.02   |
| $\sigma_{i\eta i\eta}$    | 0.01   | 0.03   | 0.01   | 0.03   |
| $\Delta\phi_{in}$         | 0.8    | 0.7    | 0.06   | 0.03   |
| $\Delta\eta_{in}$         | 0.007  | 0.01   | 0.004  | 0.007  |
| H/E                       | 0.15   | 0.07   | 0.04   | 0.025  |



### Muon Selection



- Muon is reconstructed as a global and as a tracker muon
  - ♦ ≥ 1 good muon chamber hit
  - ♦ > 10 tracker hit
  - ≥ 1 pixel hits
  - $\bigstar$  match to  $\geq 2$  muon stations
  - ♦ chi2/ndf of global fit < 10</p>
  - $\blacklozenge$   $|d_{xy}| < 2$  mm (impact parameter in transverse plane)
- Relative combined isolation
  - $\rightarrow$  (Iso<sub>TRK</sub> + Iso<sub>ECAL</sub> + Iso<sub>HCAL</sub>)/P<sub>T</sub> < 0.15
- These selections are the same in VBTF



### Photon Selection



- Pass identification and isolation criteria
  - **♦** Iso<sub>ECAL</sub>  $< 4.2 + 0.006 \times P_T$
  - **♦** Iso<sub>HCAL</sub> <  $2.2 + 0.0025 \times P_T$
  - **♦**  $Iso_{TRK}$  < 2.0 + 0.001×P<sub>T</sub>
  - ♦ H/E < 0.05
  - $\bullet$   $\sigma_{i\eta i\eta} < 0.013$  (EB), 0.03 (EE)
- No pixel seed matching
- This is recommended by EG POG <a href="https://twiki.cern.ch/twiki/bin/view/CMS/PhotonID">https://twiki.cern.ch/twiki/bin/view/CMS/PhotonID</a>