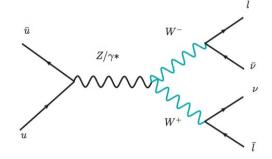
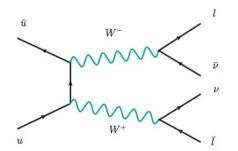
CMS: WW, WZ, ZZ cross sections

Clara Jordá (IFCA) on behalf of CMS Collaboration

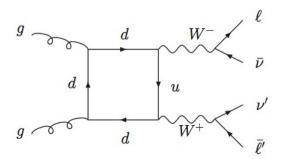
Working Group on Electroweak precision measurements at the LHC

21 – 22 May 2012 at CERN


Introduction


- Inclusive cross section measurement of WW, WZ and ZZ Standard Model processes in the fully leptonic final state:
 - WW $\rightarrow llvv$ ($l=e,\mu$) \rightarrow Predicted inclusive $\sigma_{NLO} = 47.0 \pm 2.0$ pb [1]
 - WZ $\rightarrow lllv$ ($l=e,\mu$) \rightarrow Predicted inclusive $\sigma_{NLO} = 17.5 \pm 0.5$ pb [2]
 - ZZ $\rightarrow llll$ ($l=e,\mu,\tau$) \rightarrow Predicted inclusive $\sigma_{NLO} = 6.4 \pm 0.6$ pb [2]
- Test of the Standard Model at 7 TeV
 - Measurement of the self-interaction boson coupling (TGC) could be a candle of new physics – Talk by Lindsey Gray
 - Main irreducible background for Higgs boson searches in H → WW and H → ZZ fully leptonic final state

WW process


Introduction – WW process

- Production modes
 - $q\overline{q} \rightarrow WW (97\%)$

• $gg \rightarrow WW (3\%)$

- Experimental Signature
 - Two high p_{T} leptons with opposite sign
 - Transverse missing E_T
 - Low hard jet activity
- Major background:
 - Drell-Yan, ttbar, tW, W+jets, W+γ*
 - Estimated from control regions on Data
- Others (WZ/ZZ, Wγ) from MC

- Public Results with 4.92 /fb (full 2011 data)
 - CMS SMP $-12 005 / \frac{\text{CDS Link}}{\text{CDS Link}}$

WW Selection

Only 2 high $p_{_{\rm T}}$ (20 GeV) isolated leptons with opposite sign

Reject events consistent with Z boson mass for SF channels

> Require high missing transverse energy, MET

Veto events with high p_T jets (30 GeV) Veto events with soft muon or low p_T jets b-tagged

> Kinematical cuts i.e. on $p_{_{\rm T}}(ll)$

Reduce diboson WZ and ZZ and W+jets and QCD

> Reduce Drell-Yan and peaking WZ / ZZ

Reduce Drell-Yan

Reduce top quark backgrounds: ttbar and single top, tW

Reduce remaining Drell-Yan and W+jets

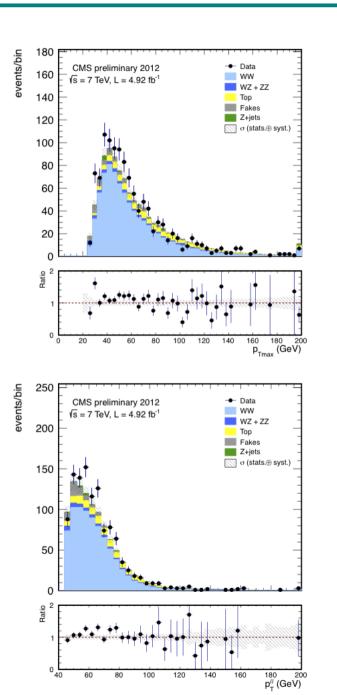
SF: Same flavour final state

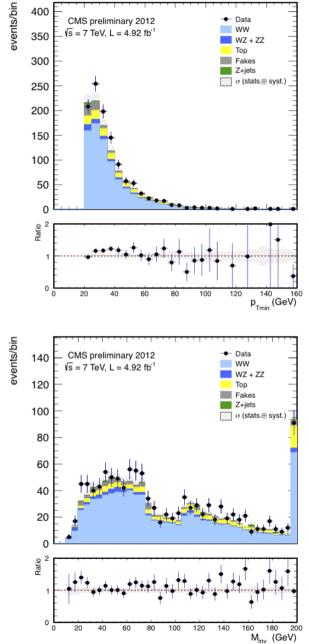
OF: Opposite flavour final state

Signal Efficiency

- Used Monte Carlo simulation for the estimation of the signal efficiency
 - Samples: Madgraph (qq) and GG2WW (gg)
- Weigh events by trigger efficiency from data
- Correct residual discrepancies data MC for the lepton identification and isolation with scale factors
 - Estimate lepton efficiencies for both with Tag & Probe method
- Studied jet veto efficiency for WW process
 - Found to be close to 1, but systematics assigned
- Studied also the effect on several objects for the experimental variations: muon momentum, electron energy scale, MET resolution, pile up, etc... 6

Systematics


- Several sources of systematics considered
 - Experimental and theoretical
 - Major source for WW efficiency is the jet veto uncertainty


Table 2: Relative systematic uncertainties on the estimated signal and background yields, in units of percent.

_									
	qq	gg	top	W + jets	WZ	$Z/\gamma *$	$W + \gamma$	$W + \gamma^*$	$Z/\gamma *$
	$ ightarrow W^+W^-$	$ ightarrow W^+W^-$			+ZZ	$\rightarrow \ell\ell$			$\rightarrow \tau \tau$
Luminosity	2.2	2.2	-	-	2.2	-	2.2	-	-
Trigger efficiency	1.5	1.5	-	-	1.5	-	1.5	-	-
Lepton id efficiency	2.0	2.0	-	-	2.0	-	2.0	-	-
Muon momentum scale	1.5	1.5	-	-	1.5	-	1.5	-	-
Electron energy scale	2.5	2.5	-	-	1.9	-	2.0	-	-
E _T ^{miss} resolution	2.0	2.0	-	-	2.0	-	2.0	-	-
Jet veto efficiency	4.7	4.7	-	-	4.7	-	4.7	-	-
pile-up	2.3	2.3	-	-	2.3	-	2.3	-	-
top normalisation	-	-	18	-	-	-	-	-	-
W + jets normalisation	-	-	-	36.0	-	-	-	-	-
$Z/\gamma^* \rightarrow \ell^+\ell^-$ normalisation	-	-	-	-	-	50.0	-	-	-
$W + \gamma$ normalisation	-	-	-	-	-	-	30.0	-	-
$W + \gamma^*$ normalisation	-	-	-	-	-	-	-	30.0	-
$Z/\gamma^* \rightarrow \tau^+\tau^-$ normalisation	-	-	-	-	-	-	-	-	10.0
PDFs	2.3	0.8	-	-	5.9	-	-	-	-
Higher order corrections	1.5	30.0	-	-	3.3	-	-	-	-
Sample statistics	0.8	1.3	-	6.6	1.5	-	48.9	10.3	15.9

Distributions after signal selection for 4.92 /fb

Backgrounds scaled by control regions on data estimations

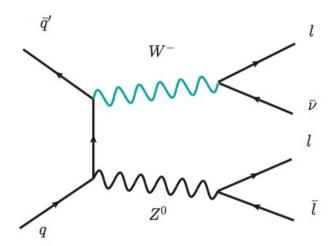
- Yields for $L_{int} = 4.92 / fb$ (2011)
- Cross section estimated as:

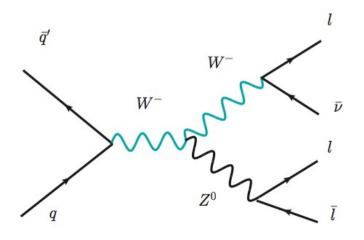
$$\sigma_{\rm WW} = \frac{\rm N_{\rm Data} - N_{\rm bkg}}{\rm L_{\rm int} \cdot \epsilon}$$

 Efficiency corrected by the corresponding Branching Ratio:

$$BR(W \rightarrow lv) = 0.108$$

Measured cross section for WW


-	Sample	Yield \pm stat. \pm syst.				
	$gg o W^+W^-$	$46.0 \pm 0.6 \pm 14.2$				
	$q\bar{q}\to W^+W^-$	$750.9 \pm 4.1 \pm 53.1$				
	$t\bar{t} + tW$	$128.5 \pm 12.8 \pm 19.6$				
	W+jets	$59.5 \pm 3.9 \pm 21.4$				
	WZ+ZZ	$29.4 \pm 0.4 \pm 2.0$				
	Z/γ^*	$11.0 \pm 5.1 \pm 2.6$				
	W+ γ	$18.8 \pm 2.8 \pm 4.7$				
	$Z/\gamma^* o au au$	$0.0\pm1.0\pm0.1$				
	Total Background	$247.1 \pm 14.6 \pm 29.5$				
	Signal + Background	$1044.0 \pm 15.2 \pm 62.4$				
	Data	1134				


$$\sigma_{WW} = 52.4 \pm 2.0 \text{ (stat.)} \pm 4.5 \text{ (syst.)} \pm 1.2 \text{ (lumi.)} \text{ pb}$$

WZ process

Introduction – WZ process

- Production mode
 - $q\overline{q}' \rightarrow WZ$

- Experimental Signature
 - Pair of same flavour leptons
 with opposite sign Z boson
 - One high p_T lepton and transverse missing E_T W boson
 - Low hard jet activity
- Major backgrounds
 - Z+jets, ttbar
 - Estimated from control region on data
- Others: ZZ, WZ (tau decays), Zγ
- Public Results with 1.09 /fb (2011 data)
 - CMS EWK 10 010 / CDS Link

WZ Selection

Pair of SF high pT isolated leptons opposite sign consistent with Z boson

If more than 1 pair, select the closest to nominal Z mass

+

One high p_T (20 GeV) isolated lepton from **W boson**

Require high missing transverse energy MET > 30 GeV Reduce Z+jets, ZZ (ttbar, W+jets)

Reduce Z+jets and Zy

SF: Same flavour final state OF: Opposite flavour final state

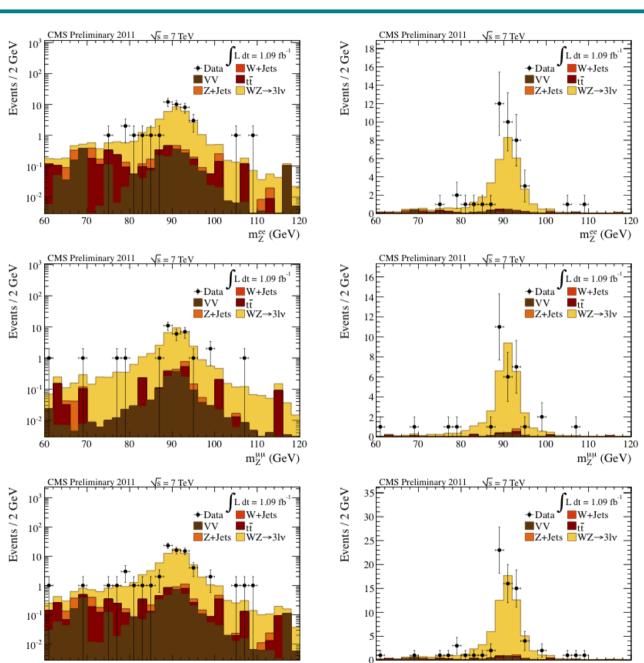
Signal Efficiency

- Used Monte Carlo simulation for the estimation of the signal efficiency
- Correct residual discrepancies data MC for the lepton, trigger, identification and isolation with scale factors
 - Estimate lepton efficiencies for both with Tag & Probe method
- Detailed study of the effect of PDFs and higher order effects for the signal acceptance
- Studied also the effect on several objects for the experimental variations: muon momentum, electron energy scale, MET resolution, pile up, etc...

Systematics

Table 9: Summary of systematic uncertainties for the WZ $\rightarrow 3\ell$ cross section measurement.

Systematics in the signal **efficiency** (experimental) and **acceptance** (theoretical)


Systematics in the signal **efficiency** (experimental)

Systematics from the **background estimation**

		eee	ееµ	µµе	μμμ
Source	Systematic uncertainty	Effect on $\mathcal{F} = A$			МС
Electron energy scale	2%	1.7%	0.25%	0.9%	n/a
Muon p_T scale	1%	n/a	0.5%	0.2%	0.9%
MET Resolution		0.5%	0.5%	0.5%	0.5%
MET Scale		0.3%	0.2%	0.1%	0.1%
Pileup		3.1%	0.8%	1.6%	1.6%
PDF	1.0%	1.0%	1.0%	1.0%	1.0%
NLO effect	2.5%	2.5%	2.5%	2.5%	2.5%
Total uncertainty on $\mathcal{F} = A \cdot \epsilon_{MC}$		4.5%	2.9%	3.3%	3.3%
Source	Systematic uncertainty	Effect on $ ho_{eff}$			
Electron trigger	1.5%	1.5%	1.5%	n/a	n/a
Electron reconstruction	0.9%	2.7%	1.8%	0.9%	n/a
Electron ID and isolation	2.5% (loose), 3.2% (tight)	5.9%	5.0%	3.2%	n/a
Muon trigger	0.54%	n/a	n/a	1.08%	1.08%
Muon reconstruction	0.74%	n/a	0.74%	1.48%	2.22%
Muon ID and isolation	0.74%	n/a	0.74%	1.48%	1.94%
Total uncertainty on ρ_{eff}		6.7%	5.6%	4.2%	3.6%
Source	Systematic uncertainty	Effect on WZ yield			d
Background estimation					
ZZ	7.5%	0.2%	0.4%	0.3%	0.4%
$Z\gamma$	13%	0.5%	0.08%	0.04%	0.08%
$Z\gamma$ $tar{t}$		1.3%	1.3%	0.9%	0.5%
P _{fake}		3.3%	4.9%	5.2%	4.2%
Source	Systematic uncertainty	Effect on luminosity			ity
Luminosity	6.0%	6.0%	6.0%	6.0%	6.0%

 Distributions after signal selection for 1.09 /fb

Backgrounds scaled by control regions on data estimations

mz (GeV)

mz (GeV)

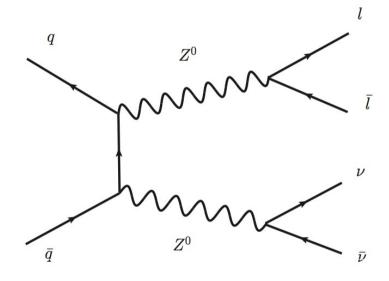
- Results for $L_{int} = 1.09 / fb (2011)$
- Cross section estimated as:

$$\sigma = \frac{N_{sig}}{A \cdot \epsilon \cdot \mathcal{L}} \longrightarrow \sigma = (1 - f_{\tau}) \frac{N_{obs} - N_{backg}}{\mathcal{F} \cdot \rho \cdot \mathcal{L}}$$

- f_{τ} : corrects for the tau decay
- $F \rho$: acceptance x efficiencies, including data-MC corrections

Table 11: Observed WZ candidate events and cross sections for $\int \mathcal{L} dt = 1.09 \text{ fb}^{-1}$ per channel

channel	Nobserved	cross section (pb)		
$\sigma_{WZ o eeev}$	22	$0.086 \pm 0.022(stat) \pm 0.007(syst) \pm 0.005(lumi)$		
$\sigma_{WZ o ee\mu \nu}$	20	$0.060 \pm 0.017(stat) \pm 0.005(syst) \pm 0.004(lumi)$		
$\sigma_{WZ o \mu \mu e u}$	13	$0.053 \pm 0.018(stat) \pm 0.004(syst) \pm 0.003(lumi)$		
$\sigma_{WZ o \mu\mu\mu\nu}$	20	$0.060 \pm 0.016(stat) \pm 0.004(syst) \pm 0.004(lumi)$		


• Measured cross sections for the 4 channels are combined, taken into account correlation in systematic uncertainties. Inclusive cross section value:

$$\sigma_{WZ}$$
 = 17.0 ± 2.4 (stat.) ± 1.1 (syst.) ± 1.0 (lumi.) pb

ZZ process

Introduction – ZZ process

- Production mode
 - $q\overline{q} \rightarrow ZZ$

• $gg \rightarrow ZZ$

- Experimental Signature
 - Two Pairs of same flavour leptons
 with opposite sign 2 Z bosons
 - 4 lepton final states considered:
 4e, 4μ, 2e2μ, 2l2τ (l=e,μ)
 - Tau channels include hadronic decays for the leptons
- Major backgrounds:
 - Zbb/cc, Z+jets, WZ
 - Estimated from control regions on data
- Nearly background free at final selection
- Public Results with 1.09 /fb (2011 data)
 - CMS EWK 10 010 / CDS Link

ZZ Selection

First Z: Pair of SF high pT leptons with opposite sign with m2l > 60 GeV If more than 1 pair, select the closest to nominal Z mass

At least 1 more high pT lepton of any flavour or sign

A fourth high pT lepton with same flavour as previous & opposite sign

Choice of the best 4l ZZ candidate, such as Z2 with Z1 selected gives m4l > 100 GeV

ID requirements for leptons

4e, **2e2**μ, **4μ**: 60 < mZ1, mZ2 < 120 GeV **2l2τ**: 30 < visible mass (ττ) < 80 GeV

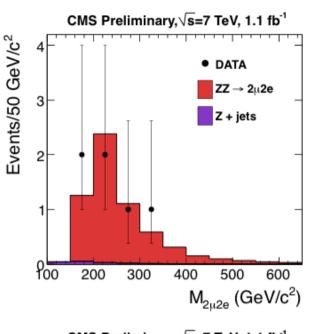
Control WZ

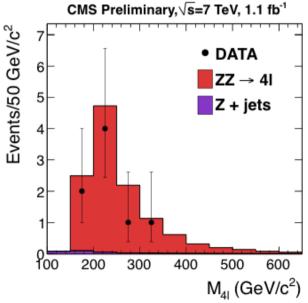
Reduce QCD, Z + jets ...

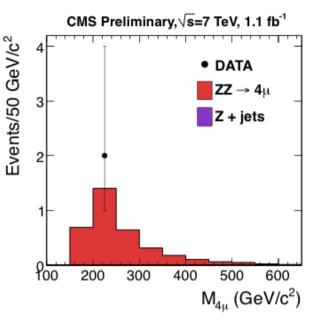
Reduce Zbbar/ccbar, ttbar and WZ+jets ...

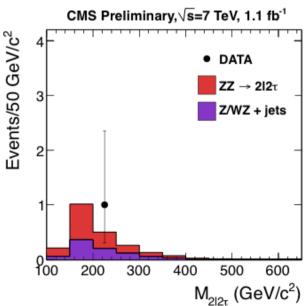
Signal efficiency & Systematics

Several sources of systematics considered


Experimental


- 4*l* final states: evaluated from data: trigger (1.5%), identification (3%) and isolation (2%) lepton efficiencies, lepton momentum scale (1%)
- τ channels: additional 6% for τ reconstruction and 3% for energy scale
- **Theoretical**: PDF + α_s and QCD scale


Table 12: Summary of statistical and systematic uncertainties.


There is a constraint of the c						
4μ	4e	2e2µ				
Effects on acceptance A						
2.2 %	2.2 %	1.8 %				
Effects on efficiency ϵ (from [6])						
1.7 %	3.7 %	3.0 %				
100 %	43 %	40 %				
	6 %					
	4μ 2.2 % Effe 1.7 %	4μ 4e Effects on acceptance A 2.2 % 2.2 % Effects on efficiency ϵ (from 1.7 % 3.7 % 100% 43 %				

Distributions after signal selection for1.10 /fb

• Results for
$$L_{int} = 1.10 / fb$$
 (2011)

Final state $N_{\rm obs}$ $N_{\rm estimated}^{\rm backg.}$ $N_{\rm expected}^{\rm ZZ}$ $4\mu \qquad 2 \qquad 0.004 \pm 0.004 \qquad 3.7 \pm 0.4$ $4e \qquad 0 \qquad 0.14 \pm 0.06 \qquad 2.5 \pm 0.2$ $2e2\mu \qquad 6 \qquad 0.15 \pm 0.06 \qquad 6.3 \pm 0.6$

 0.8 ± 0.1

Cross section estimated as a simultaneous constrained fit on the number of observed

events in all decay channels, using a Likelihood function

$$\mathcal{L}(r) = \prod_{i} \mathcal{L}_{i}(N_{i}^{obs}, r, S_{i}, B_{i}, \nu_{S}, \nu_{B}),$$

- N^{obs}: observed events
- r: signal strength

 $2l2\tau$

- S: number of expected signal events
- B: number of expected background events
- v_S, v_B: statistical and systematics uncert. in form of scaling nuisance parameters
- The resulting cross section was found to be:

$$\sigma_{ZZ} = 3.8^{+1.5}_{-1.2} \text{ (stat.)} \pm 0.2 \text{ (syst.)} \pm 0.2 \text{ (lumi.) pb}$$

 1.4 ± 0.1

Conclusions

- Inclusive cross section measurement for WW, WZ and ZZ Standard Model processes at 7 TeV done with 2011 Data
- The cross section for WW with an integrated luminosity of 4.92 /fb
 - $\sigma_{WW} = 52.4 \pm 2.1 \text{ (stat.)} \pm 4.4 \text{ (syst.)} \pm 2.5 \text{ (lumi.)} \text{ pb}$
 - Theoretical expectation $47.0 \pm 2.0 \text{ pb}$
- The cross section for WZ with an integrated luminosity of 1.09 /fb
 - $\sigma_{WZ} = 17.0 \pm 2.4 \text{ (stat.)} \pm 1.1 \text{ (syst.)} \pm 1.0 \text{ (lumi.)} \text{ pb}$
 - Theoretical expectation 17.5 ± 0.5 pb
- The cross section for ZZ with an integrated luminosity of 1.10 /fb
 - $\sigma_{ZZ} = 3.8^{+1.5}_{-1.2} \text{ (stat.)} \pm 0.2 \text{ (syst.)} \pm 0.2 \text{ (lumi.)} \text{ pb}$
 - Theoretical expectation 6.4 ± 0.6 pb

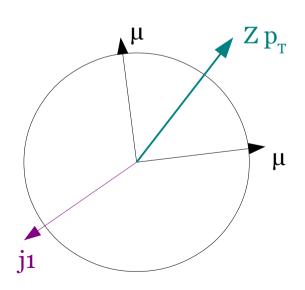
Conclusions

- Experimental results compatible with the Standard Model predictions
- Measurements for the WZ and ZZ at 7 TeV cross section to be made public soon with the full 2011 Data – 4.92 /fb
- WW, WZ and ZZ cross section measurements at 8 TeV planned with 2012 Data

• Limits on the anomalous TGC also being performed

Back Up Slides

Signal Monte Carlo Production


• WW: Madgraph (qq) and GG2WW (gg)

• WZ: PYTHIA

ZZ: PYTHIA. NLO evaluated with MCFM

WW: Other selections

- Veto events with a third lepton to reduce diboson backgrounds WZ and ZZ
- Same flavour final states: ee and μμ
 - Drell Yan events: Z can recoil against jets in the event
 - Take advantage of the azimuthal angle Φ between the leading low p_T jet and the Z boson direction
 - Reject events with $\Delta\Phi(ll,j) > 165^{\circ}$
 - j: leading jet with 15 < p_{T} < 30 GeV
 - ll: dilepton system \rightarrow Z boson direction
- Kinematical cut $p_{T}(ll) > 45 \text{ GeV}$
 - Further removes DY/Z backgrounds and fakes

WW Backgrounds estimation

Main backgrounds estimated from control regions on Data

Drell-Yan

 Control region on data defined by Z mass window. Extrapolate to signal region by ratio out – in

Top processes: ttbar and tW

• Estimate on data the low pT jet tagging efficiency. Extrapolate from a pure top control region on data with top-tagged events to signal region

W+jets and QCD

• Fake rate method – probability for a jet to fake a lepton. Weight a data sample with relaxed lepton cuts with this fake rate

• $W + \gamma^*$

- Estimate k-factor to correct the cross section from a pure control sample on data
- WZ, ZZ, Drell-Yan $\rightarrow \tau\tau$, W+ γ : Predicted from MC

WZ Backgrounds estimation

- Main backgrounds estimated from control regions on Data
- Z+jets and ttbar
 - [One SF pair within Z mass] & [Jet that can fake a lepton]
 - Estimated from Matrix Method
 - Two data control regions defined by W boson candidates with tight and loose requirements on lepton isolation
 - Measure efficiency for tight isolation on leptons (true) and jets (fake)
 - From measurable number of Tight and Loose events, extrapolate the number of fake W candidates → Z+jets + ttbar events
- ttbar remaining from MC
- WZ $\rightarrow 3lv$ ($l=\tau$) Subtracted from the final as a fraction determined by MC
- **ZZ and Zy** Small contribution, estimated from MC

ZZ Backgrounds estimation

- Main backgrounds estimated from control regions on Data
 - This channel is very clean and background free

Zbbar/ccbar and ttbar

- Select the first Z boson (Z1)
- Remove isolation, flavour and charge requirements for the lepton pair for Z2 & Reverse the impact parameter cut
- Extrapolate from this region to signal region using the impact parameter distribution. Final contribution < 10⁻³

Z+jets

- Select the first Z boson (Z1)
- Same sign for the second pair of leptons, with inverted isolation and relaxed identification cuts
- Number of Z+jets events estimated from this control region with the₃₀ fake rate probability