Inclusive W^{\pm} and Z Measurements with the ATLAS Detector

A. Lewis (Oxford) on behalf of the ATLAS Collaboration

May 21, 2012

1 / 22

Overview

- ullet W,Z inclusive measurement with 2010 data ($\mathcal{L}=35 \mathrm{pb}^{-1}$)
 - ► arXiv:1109.5141, Phys. Rev. D 85, 072004 (2012)
 - ► Total and fiducial integrated cross sections
 - Differential cross sections
 - W charge asymmetry
- Application of this measurement to the determination of the strange quark density
 - ▶ arXiv:1203.4051, accepted by PRL
- Polarisation measurement of W at large transverse momentum
 - arXiv:1203.2165, sub. EPJC
- Proposal for common fiducial region for future measurement

Selection

- single lepton trigger
- $p_T^{\ell} > 20 \, GeV$
- \bullet μ channel: $|\eta^{\mu}| < 2.4$
- "central" e channel $|\eta^e| <$ 2.47 (excluding calo. crack: $1.37 < |\eta^e| < 1.52$)

$$W \rightarrow \ell \nu$$

- single isolated lepton
- $E_T^{Miss} > 25 GeV$
- $m_T > 40 \, GeV$

$$Z \rightarrow \ell \ell$$

- 2 isolated leptons
- opposite charge
- $66 < m_{\ell\ell} < 116 \, GeV$
- For combination of e and μ channels extrapolate to common fiducial region: $|\eta_\ell| < 2.5$
- Complementary "Forward" $Z \rightarrow ee$ measurement:
 - ▶ One well identified electron in central region
 - ▶ One forward electron in range $2.5 \le |\eta_e| \le 4.9$

Cross Section Definitions

$$\sigma_{fid} = \frac{N - B}{C_{W/Z} \mathcal{L}} \qquad \qquad \sigma_{tot} = \frac{\sigma_{fid}}{A_{W/Z}}$$

- Fiducial cross section, σ_{fid} , is corrected for efficiencies Efficiency factor $C_{W/Z} = \frac{N_{MC,rec}}{N_{MC,ren,cut}}$
- - corrected for data/MC differences using "Tag and Probe" method
- N_{MC.gen.cut} defined at three different levels of QED FSR corrections
 - Born: Leptons before QED FSR
 - Bare: Leptons after QED FSR
 - Dressed: Bare lepton re-summed with all FSR photons within $\Delta R < 0.1$
- QED FSR correction factors published on HepData hepdata.cedar.ac.uk/view/ins928289/d16
- Total cross section, σ_{tot} , is corrected for acceptance
- Acceptance, $A_{W/Z}$, derived from MC
- Theoretical uncertainties for $C_{W/Z}$ and $A_{W/Z}$ by comparing
 - MC@NLO
 - Powheg+Pythia and Powheg+Herwig
 - Reweighting to different PDF sets
 - PDF eigenvector propagation

Systematic Uncertainties on Fiducial Cross Section

Electron channel

• $W \to e\nu$: 1.8% - 2.0%

• $Z \to ee: 2.7\%$

	$\delta\sigma_{W^\pm}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta \sigma_Z$
Trigger	0.4	0.4	0.4	< 0.1
Electron reconstruction	0.8	0.8	0.8	1.6
Electron identification	0.9	0.8	1.1	1.8
Electron isolation	0.3	0.3	0.3	-
Electron energy scale and resolution	0.5	0.5	0.5	0.2
Non-operational LAr channels	0.4	0.4	0.4	0.8
Charge misidentification		0.1	0.1	0.6
QCD background	0.4	0.4	0.4	0.7
Electroweak $+t\bar{t}$ background	0.2	0.2	0.2	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$ scale and resolution	0.8	0.7	1.0	_
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.6	0.6	0.6	0.3
Total experimental uncertainty	1.8	1.8	2.0	2.7
$A_{W/Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0
Total excluding luminosity	2.3	2.4	2.8	3.3
Luminosity	3.4			

Muon channel

• $W \to \mu \nu$: 1.6% - 1.7%

• $Z \to \mu \mu$: 0.9%

	$\delta\sigma_{W^\pm}$	$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta \sigma_Z$
Trigger	0.5	0.5	0.5	0.1
Muon reconstruction	0.3	0.3	0.3	0.6
Muon isolation	0.2	0.2	0.2	0.3
Muon p_T resolution	0.04	0.03	0.05	0.02
Muon p_T scale	0.4	0.6	0.6	0.2
QCD background	0.6	0.5	0.8	0.3
Electroweak $+t\bar{t}$ background	0.4	0.3	0.4	0.02
$E_{\rm T}^{\rm miss}$ resolution and scale	0.5	0.4	0.6	-
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.8	0.8	0.7	0.3
Total experimental uncertainty	1.6	1.7	1.7	0.9
$A_{W/Z}$ theoretical uncertainty	1.5	1.6	2.1	2.0
Total excluding luminosity	2.1	2.3	2.6	2.2
Luminosity		3.4	1	

Combination and Treatment of Correlated Uncertainties

- Assuming lepton universality, can combine e and μ results with an averaging procedure
- Distinguish sources of uncertainty by their correlations
 - ▶ bin-to-bin
 - lacktriangle between e and μ channels
 - ▶ between W⁺, W⁻ and Z measurements
- 30 sources of correlated uncertainty
- $\gamma_{j,k}^i$ quantifies influence of uncertainty i on measurement j in dataset k
- Useful input for PDF fits

$y_{min} - y_{max}$	0.0-0.4	0.4-0.8	0.8-1.2	1.2-1.6	1.6-2.0	2.0-2.4	2.4-2.8	2.8-3.6
$d\sigma/dy$ [pb]	129.27	129.44	125.81	118.23	113.37	105.26	92.18	53.38
δ_{sta} , %	1.46	1.47	1.50	1.61	1.84	2.57	3.24	4.21
δ_{unc} , %	0.59	0.50	0.47	0.45	0.63	1.37	3.81	4.37
δ_{cor} , %	1.07	1.08	0.93	0.97	1.26	2.19	3.77	8.06
δ_{tot} , %	1.90	1.89	1.83	1.94	2.32	3.65	6.26	10.09
$\gamma_1, \%$	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29
$\gamma_2, \%$	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
$\gamma_3, \%$	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
$\gamma_4, \%$	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.18
$\gamma_5, \%$	0.07	0.07	0.05	0.04	0.01	0.00	0.06	0.18
$\gamma_6, \%$	-0.13	-0.10	-0.08	-0.05	-0.04	-0.07	-0.06	-0.03
$\gamma_7, \%$	0.05	0.04	0.05	0.04	0.05	0.09	0.58	1.76
$\gamma_8,\%$	-0.07	-0.09	-0.07	-0.09	-0.08	-0.19	-0.42	-1.16
$\gamma_9, \%$	-0.03	-0.02	-0.05	0.01	0.05	0.18	0.61	1.28
$\gamma_{10}, \%$	0.12	0.13	0.11	0.08	0.03	-0.05	-0.40	-0.93
$\gamma_{11}, \%$	-0.10	-0.10	-0.10	-0.05	0.01	0.13	0.63	1.87
$\gamma_{12}, \%$	0.06	0.06	0.06	0.15	0.33	0.76	2.26	4.97
$\gamma_{13}, \%$	-0.28	-0.29	-0.17	-0.15	0.15	0.18	0.11	-0.39
$\gamma_{14}, \%$	-0.02	0.01	-0.03	0.05	-0.01	0.23	1.16	3.19
$\gamma_{15}, \%$	0.07	0.06	0.01	0.03	0.02	0.23	1.18	2.70
$\gamma_{16}, \%$	-0.10	-0.08	-0.08	-0.03	-0.09	0.04	0.23	1.64
$\gamma_{17}, \%$	-0.53	-0.55	-0.43	-0.37	-0.37	-0.58	-0.82	-1.95
$\gamma_{18}, \%$	0.07	0.02	0.03	0.07	0.17	0.17	0.45	0.56
$\gamma_{19}, \%$	-0.16	-0.16	-0.13	-0.06	-0.07	-0.06	0.03	0.37
$\gamma_{20}, \%$	0.34	0.32	0.22	0.30	0.41	0.66	-0.03	-0.83
$\gamma_{21}, \%$	-0.15	-0.17	-0.15	-0.09	0.04	0.13	0.04	-0.03
$\gamma_{22}, \%$	-0.10	-0.15	0.00	-0.25	-0.45	-1.15	-0.28	1.39
$\gamma_{23}, \%$	0.05	0.02	0.00	-0.23	-0.49	-0.85	-0.09	0.78
$\gamma_{24}, \%$	0.22	0.23	0.23	0.16	0.00	0.15	0.49	0.28
$\gamma_{25}, \%$	0.17	0.16	0.12	0.14	0.08	0.01	0.26	0.26
$\gamma_{26}, \%$	0.18	0.25	0.28	0.18	0.24	0.69	0.03	-1.13
$\gamma_{27}, \%$	0.00	-0.01	-0.04	-0.04	-0.06	-0.20	-0.19	-0.04
$\gamma_{28}, \%$	0.50	0.47	0.45	0.52	0.66	0.62	0.70	0.26
$\gamma_{29}, \%$	0.17	0.18	0.16	0.13	-0.06	-0.14	-1.68	-0.46
$\gamma_{30}, \%$	-0.12	-0.11	-0.14	-0.12	-0.11	-0.20	-0.21	-0.21

Integrated Fiducial Cross Sections

- Compare theory to measurement in fiducial region to disentangle theoretical and experimental effects
- Theoretical prediction at NNLO with different PDF sets
 - Compare FEWZ 2.1 (pre-release) to DYNNLO 1.1 (up to 1% differences for fiducial cross sections)
 - ► Remaining H.O. EW effects calculated separately (up to 0.5% effect)
 - ▶ In following plots use FEWZ without extra EW corrections
- Generally good agreement

Integrated Total Cross Sections

- $A_{W/Z} \sim 0.47 0.50$
- Introduces additional theoretical and model uncertainties
- As large or larger than experimental uncertainties
 - $ightharpoonup \delta A_W \sim 1.5\%$
 - $\delta A_Z \sim 2\%$

Cross Section Ratios

 Consider fiducial cross section ratios to cancel luminosity and other correlated uncertainties

Z differential cross section

- $\frac{d\sigma}{dy_7}$ with fiducial cuts (except η)
- ullet Measurement extrapolated to all η
- Combination of "central" and "forward" measurements
- Theoretical predictions at NNLO from FEWZ with different PDF sets
- Generally good agreement with some tension between PDF sets

W^{\pm} Differential Cross Sections

- $\frac{d\sigma}{d\eta_{\ell}}$ in common fiducial region
- Normalisation of prediction from FEWZ
- Shape of prediction from DYNNLO due to higher statistical precision
- Generally good agreement with some tension between PDF sets

W Differential Charge Asymmetry

$$A(\eta_{\ell}) = \frac{\sigma^{+}(\eta_{\ell}) - \sigma^{-}(\eta_{\ell})}{\sigma^{+}(\eta_{\ell}) + \sigma^{-}(\eta_{\ell})}$$

Following previous discussion at LHC EWK working group extrapolated ATLAS charge asymmetry result to common fiducial region to aid comparisons with CMS and LHCb

• only $p_{\ell} > 20 \text{ GeV}$

Application of Measurement: Determination of Strange Quark Density

- Very little is known about strange quark distribution in proton
- 2 types of NNLO QCD fit of HERA DIS and ATLAS W/Z cross section data
 - s quark distribution suppressed and fully coupled to d, $\bar{s}/\bar{d}=0.5$
 - ▶ s quark distribution parameterised with 2 free parameters
- Fit with free \bar{s} results in better partial χ^2/N_{DF} for ATLAS data (33.9/30 vs 44.5/30)
- Enhanced strange fraction in free fit improves prediction of y_Z distribution

Strange Quark Density Fit Result

- $r_s = 0.5(s + \bar{s})/\bar{d}$
- Free \bar{s} fit results in r_s consistent with unity
- Considerable tension with most PDF sets
- See A. Cooper-Sarkar's talk on Wednesday for more detail
- arXiv:1203.4051, accepted by PRL

Measurement of the W Polarisation

- W helicity fractions: f_0 , f_L and f_R
 - ▶ Low p_T^W : Mixture of LH and RH states (mostly LH for large y_W)
 - ▶ High p_T^W : All states possible

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{3D}} = \frac{3}{8} f_L (1 \mp \cos\theta_{3D})^2 + \frac{3}{8} f_R (1 \pm \cos\theta_{3D})^2 + \frac{3}{4} f_0 \sin^2\theta_{3D}$$

- Helicity angle θ_{3D} :
 - Angle between direction of W in lab frame and direction of decay lepton in W rest frame
 - Not possible to reconstruct unambiguously
- Use transverse helicity angle: $\cos\theta_{2D}=\frac{\vec{p}_T^{\ell*}\cdot\vec{p}_T^W}{|\vec{p}_T^{\ell*}||\vec{p}_T^W|}$
- Fit $\cos \theta_{2D}$ distribution to MC templates corresponding to LH, RH and longitudinal states
- ullet $f_L+f_R+f_0=1
 ightarrow$ report results for f_0 and f_L-f_R

Template Fits

- Use MC@NLO and Powheg
- Reweight events to purely LH, RH or longitudinal $cos\theta_{3D}$ distributions at generator level
- Apply selection
 - Standard W selection
 - ▶ $50 < m_T < 110 GeV$
 - ► Two p_T^W bins: $35 < p_T^W < 50 \, GeV$ and $p_T^W > 50 \, GeV$
- Background subtraction in data
- Fit $\cos \theta_{2D}$ distribution to templates

W Polarisation Results

- Correct fit results
 - Resolution effects
 - ▶ Effects of using $\cos \theta_{2D}$ rather than $\cos \theta_{3D}$
- Largest uncertainties:
 - Powheg vs MC@NLO templates
 - ▶ Recoil energy scale uncertainty reduced for $f_L f_R$ by averaging over lepton charges
- Results in agreement with prediction within uncertainties

Changes to the Fiducial Selection

- Small changes to fiducial volume definition
- W and "forward" Z measurement
 - Higher single lepton trigger threshold
 - ▶ For 2011 data: p_T^{ℓ} cut in range 20-25 GeV
 - ▶ For 2012 data: p_T^{ℓ} cut in range 25-27 GeV
- Central Z measurement will use dilepton triggers with lower threshold \rightarrow can stay with $p_T^{\ell} > 20 \text{ GeV}$
- Other fiducial cuts can remain unchanged
 - $E_T^{Miss} > 25 \text{ GeV}$
 - $ightharpoonup m_T > 40 \text{ GeV}$
 - ▶ $66 < m_{\ell\ell} < 116 \text{ GeV}$

Summary

- W and Z cross section measurements
 - Total and fiducial integrated cross sections
 - Differential cross sections
 - ▶ Full correlation information between measurements
 - Experimental precision of 1% 2.7%
 - Generally good agreement with NNLO prediction
- Determination of the strange quark distribution
 - Fit of HERA DIS and ATLAS W/Z data
 - Result consistent with $r_s = 1.0$
- ullet W polarisation measurement at high p_T^W
 - ▶ Template fit $\cos \theta_{2D}$ distribution
 - Measurement of $f_L f_R$ and f_0
 - Results in agreement within uncertainties with Powheg and MC@NLO
- Change in fiducial cuts in 2011/2012 measurements
 - ▶ Slight increase of lepton p_T
 - Other cuts can remain the same

Backup

