

LHCb electroweak results

Motivation Dataset

- Introduction
- W,Z cross-section measurements
- Low mass Drell Yan production
- Outlook for 2011/2012
- Conclusions

Note: only new (post winter conference) results will be shown.

1. Introduction

- 2. W, Z measurements
- 3. Low mass Drell-Yan
- 4. Outlook
- 5. Conclusions

Motivation Dataset

LHCb probes two x-Q² regions:

Medium Q² (10'000 GeV²):

• Z,W measurements: x= 5 x10⁻⁵

Low Q² (25 GeV²):

• Drell-Yan (γ*): x= 10⁻⁶

Motivation Dataset

2010: 37.7 pb⁻¹ data recorded

2011: ~1.1 fb⁻¹ recorded

2012: ~230 pb⁻¹ recorded

note: low average no. of interactions (~1.5) due to luminosity levelling

LHCb-CONF-2012-011

1. Introduction	7 →
2. W, Z measurements	Z→ee
3. Low mass Drell-Yan	W→uv
4. Outlook	Results
5. Conclusions	incounts

arXiv: 1204.1620 LHCb-PAPER-2012-008, submitted to JHEP

Trigger:

Single μ , $p_T > 10 \text{ GeV}$

Muon:

p_T > 20 GeV 2.0 < η < 4.5 $\Sigma p_{T,\Sigma} \Sigma E(\gamma)$ in R= $\sqrt{(\Delta \eta^2 + \Delta \phi^2)}$ =0.5 cone around μ < 2 GeV Unbiased impact parameter < 40 μm E/p < 0.04 No other μ with P_T > 2 GeV

Backgrounds:

- Electroweak (W, Z/γ)
- QCD (heavy flavour, decay in flight)

2010 data: L = 37 pb⁻¹ N₊ = 14 660 N₋ = 11 618

Fit muon p_T spectrum in data to expected shapes for signal and background, extract $N_{W^+},\,N_{W^-}$

W+ (W-) Purity: 78.8% (78.4%)

1. Introduction	7->
2. W, Z measurements	Z →µµ Z→ee
3. Low mass Drell-Yan	$W \rightarrow \mu \nu$
4. Outlook	Results
5. Conclusions	

Efficiencies: all determined from data.

Precision:

	Z→ µµ	Z→ ee	W→ µv W+/W-
Statistical Luminosity Systematic	2.2% 3.5% <mark>4.3%</mark>	0.7% 3.5% 3.1%	1.1/1.2% <mark>3.5%</mark> 3.2/2.9
Luminosity[pb]	37.5	945	37.5

Systematic uncertainties will reduce with more statistics

Dominant sources:

- Efficiencies
- Purity for W analysis
- $Z \rightarrow \mu \mu$: limited by efficiency uncertainty (statistical)
- Z \rightarrow ee , W \rightarrow $\mu\nu$: luminosity uncertainty

9

> P T T T T T

-0-

Ζ→μμ

Z→ee

Ζ→ττ (μμ)

Ζ→ττ (**e**μ)

⊥ σ_{Z → µµ} [pb]

 $\sigma_{Z \rightarrow ee} [pb]$

 $\sigma_{Z \rightarrow \tau \tau (\mu \mu)} [pb]$

 $- \sigma_{Z \rightarrow \tau\tau (\mu e)} [pb]$

arXiv: 1204.1620 LHCb-CONF-2012-011

LHC electroweak workshop May 2012

Tara Shears, University of Liverpool 12

Differential W+ and W- cross-sections as a function of muon η Ratio of W+ to W- production as a function of muon η

(note: full correlation matrix available for W+,W-,Z results)

W charge asymmetry as a function of η P_T>20, P_T>25, P_T>30 GeV

- Heavy flavour (Data)
- K/ π misid. (Data)
- Radiative tail of Upsilon (M<10 GeV/c²)

2010 data: L = 37 pb⁻¹

 Introduction W, Z measurements Low mass Drell-Yan Outlook Conclusions 	Selection Results
---	----------------------

Fit minimum muon isolation $(p_T(\mu)/p_T(\mu-Jet))$ in data to shapes expected for signal and background, extract Nsig

Efficiencies determined from data.

Main systematic errors: (low masses) shapes used for template fit 24%, efficiencies.

LHCb-CONF-2012-013

Differential cross-section as function of Mµµ (9 bins), cf. Pythia, FEWZ, DYNNLO

4. Outlook

5. Conclusions

Selection Results

LHCb-CONF-2012-013

Differential cross-section as function of $y\mu\mu$, for two mass regions.

- Introduction
 W, Z measurements
 Low mass Drell-Yan
 Outlook
- 5. Conclusions

2011 data:

- Update W, Z cross-sections in muon final states
 - Expect stat. error reduced by factor 5
 - Expect sys. error reduced (theory: understanding W P_T)
- Update Z-> $\tau\tau$, adding hadronic tau decay modes
- Update DY
 - $d\sigma/dMdy$ below M_Z
 - Add d σ /dM above M_z
- First Z+jet production measurements
 - Z+b, Z+c, W+b, W+c
- A_{FB}

2012 data:

• As above.

Note: stable running conditions; no changes to thresholds foreseen.

Most recent LHCb electroweak measurements presented:

 $W \rightarrow \mu \nu$, $Z \rightarrow \mu \mu$: In agreement with NNLO predictions

Z→ee:

First measurement, in agreement with NNLO

Low mass Drell Yan:

First measurement, for $M\mu\mu > 5$ GeV In agreement with NLO (where predictions available).

Backup

1.	Introduction
2.	. W→μ, Z→μμ
3.	Other channels
4.	Outlook
5.	Conclusions

.

Z selection W selection Efficiencies Systematic errors Results

Source	$\Delta \sigma_{Z \to \mu\mu}$ (%)	$\Delta \sigma_{W^+ \to \mu^+ \nu}$ (%)	$\Delta \sigma_{W^- \to \mu^- \bar{\nu}}$ (%)
Signal purity	± 0.1	± 1.2	± 0.9
Template shape (fit)	_	± 0.9	± 1.0
Efficiency (trigger, tracking, muon id)	± 4.3	± 2.2	± 2.0
Additional selection	_	± 1.8	± 1.7
FSR correction	± 0.02	± 0.01	± 0.02
Total	± 4.3	± 3.2	± 2.9
Luminosity	± 3.5	± 3.5	± 3.5