W/Z p_T with Powheg-Box + Pythia8 / HW++ keith hamilton for the Powheg-Box team #### Outline: Powheg-Box W / Z + Pythia 8 p_T spectrum Contributions to the p_T spectrum Changing the shower - Used Powheg-Box v1.0 event files from early summer 2011 [Alioli, Nason, Oleari, Re - JHEP 0807 (2008) 060] - Differences in this v.quick study w.r.t ATLAS analysis: - Used CTEQ6m in Powheg at variance with ATLAS paper - To ease comparison to data used C++ shower MC ... - Generated the W⁺ & W⁻ LH files separately combined using my own program for that - \blacksquare W \rightarrow $\mu\nu$ p_T - Powheg-Box + Pythia8, hadron level + U.E. - Powheg w. CTEQ6m, Pythia 8.150 w. def. tune [CTEQ6L1] * Rivet analyses by E.Yatsenko & J.Katzy - \blacksquare W \rightarrow ev p_T - Powheg-Box + Pythia8, hadron level + U.E. - Powheg w. CTEQ6m, Pythia 8.150 w. def. tune [CTEQ6L1] - Z→ee p_T - Powheg-Box + Pythia8, hadron level + U.E. - Powheg w. CTEQ6m, Pythia 8.150 w. def. tune [CTEQ6L1] #### Outline: Powheg-Box W / Z + Pythia 8 p_T spectrum Contributions to the p_T spectrum Changing the shower #### MPI effects - No MPI [hadron level] events vs. MPI events - Inclusive w.r.t QCD radiation, MPI effect near negligible - \blacksquare Goes for W p_T, Z p_T, electrons / muons, dressed / bare kin. #### Hadronization effects - Showered vs. hadronised events - Inclusive w.r.t QCD radiation, hadr. effect near negligible - \blacksquare Goes for W p_T, Z p_T, electrons / muons, dressed / bare kin. ## Single vs. multiple parton emissions - Les Houches [single emission] vs. showered events - Sizeable phase space for secondary radiations - \blacksquare Same size correction in W p_T in electron channel #### Outline: Powheg-Box W / Z + Pythia 8 p_T spectrum Contributions to the p_T spectrum Changing the shower #### Default shower vs. Power shower vs Wimpy shower - W p_T left, Z p_T left: Powheg-Box W/Z + Py8, parton level - \blacksquare Marginal softening: power \rightarrow default \rightarrow wimpy shower - Also for $W \rightarrow \mu \nu$ & bare kinematics #### Powheg-Box W / Z programs + Herwig++ [+ MRSTLOMC] - \blacksquare W \rightarrow µ ν p_T - Powheg-Box + Pythia 8 & Herwig++, hadron level + U.E. - Powheg w. CTEQ6m, Py8 as before, HW++ has MRSTLOMC #### Powheg-Box W / Z programs + Herwig++ [+ MRSTLOMC] - W→ev p_T - Powheg-Box + Pythia 8 & Herwig++, hadron level + U.E. - Powheg w. CTEQ6m, Py8 as before, HW++ has MRSTLOMC #### Powheg-Box W / Z programs + Herwig++ [+ MRSTLOMC] - Z→ee p_T - Powheg-Box + Pythia 8 & Herwig++, hadron level + U.E. - Powheg w. CTEQ6m, Py8 as before, HW++ has MRSTLOMC #### Truncated shower effects? - When POWHEG gives a real emission according to the NLO calculation it's supposed to be the hardest. - So in general you just veto emissions from the shower with $p_T > p_{T,POWHEG}$ But if the shower is A.O. then the shower should also try to include 'earlier' soft wide angle emissions [Idea: Nason 2004, Implementation: KH, Richardson, Tully 2008] #### HW++ native Powheg w. & w.o. the truncated shower - Native HW++ Powheg simulation used here; parton level - HW++ truncated shower off [red] vs on [blue] - Truncated shower effects negligible in V p_T spectra ## Comparison to higher order NLL+NLO - Red is Powheg V + Herwig++ [V = W / Z] - Blue is merged Powheg V + Powheg VJ + Herwig++ - NLO effect is small roughly approximated in Powheg V * N.B. CTEQ6m used also in HW++ shower in these two plots! ## Summary 1/2 - Agreement with 2011 W & Z p_T data looked OK - Differences in this v.quick study w.r.t ATLAS analysis: - Used CTEQ6m in Powheg at variance with ATLAS paper - To ease comparison to data used C++ shower MC ... - Generated my W⁺ & W⁻ LH files separately combined using independent program - Non-perturbative corrections [hadronizatⁿ & MPI] are negligible, in line with naive expectations - Correction due to multiple [parton shower] emissions beyond single [hard] Powheg emission is not small: 20% increase at high p_T ## Summary 2/2 - W / Z p_T robust against changes in Py8 shower - Powheg-Box + Py8 and Powheg-Box + HW++ looked in pretty good agreement - Checks with fully fledged internal HW++ Powheg simulation show truncated shower effects are negligible for this observable [+ many more besides] - Powheg-V simulations agree well w. NLO+NLL p_T from development version of enhanced Powheg-VJ ## Muon charge asymmetry - W→µν - Powheg-Box + Pythia 8 & Herwig++, hadron level + U.E. - Powheg w. CTEQ6m, Py8 as before, HW++ has MRSTLOMC - \blacksquare W \rightarrow $\mu\nu$ p_T - "Dressed" vs. "Bare" kinematics hard to distinguish. [Rivet analyses by E.Yatsenko & J.Katzy] - W→ev p_T - "Dressed" vs. "Bare" kinematics - \blacksquare Z \rightarrow ee p_T - "Dressed" vs. "Bare" kinematics #### Bozzi, Catani, de Florian, Ferrera, Grazzini [NPB 2009] - NLO μ_R & μ_F unc. at p_T = 40 GeV is 20% and increasing ← - NLL μ_R & μ_F unc. at p_T = 40 GeV is 20% and decreasing \leftarrow - More recent 2011 NNLL+NLO computation confirms - Accuracy not degraded by NLO \rightarrow NLL+LO for p_T < 40 GeV #### Bozzi, Catani, de Florian, Ferrera, Grazzini [NPB 2009] - $p_T < 70 \; GeV: LO \& \; NLO \; \mu_R \; \& \; \mu_F \; error \; bands \; don't \; overlap \\ \text{... and NLO band is shrinking}$ - Err. redefined to be 'more reliable' for $p_T < 70$ GeV : $\Delta(\mu_R, \mu_F) = NLO_{central\ value} LO_{closest\ value}$ - \blacksquare Err. again 'unreliable' for $p_T < 20 \text{ GeV}$ starts shrinking