V+jets Experimental Issues

Monica Dunford May 21st, 2012 LHC EW Working Group

Outline

- Main points of focus
 - Review of 2010 results
 - Overview of theory predictions for 2011 results
 - Phase space and observables for 2011/2012 results
 - Combinations of phase space and additional considerations

2010 Results

- ATLAS and CMS 2010 V+jets results are largely complementary
 - CMS has W⁺, W⁻ and W/Z ratio results for several jet multiplicities
 - ATLAS measures many jet-based observables
- Links to publications from 2010
 - CMS:
 - W, Z, R+jets: JHEP 01 (2012) 010
 - ATLAS:
 - W+jets: Phys. Rev. D85 (2012) 092002
 - Z+jets: Phys. Rev. D85 (2012) 032009
 - R+jets: Phys. Lett. B708 (2012) 221-240

Phase Space for 2010

• Fiducial cross sections definitions are already quite similar, but different in many ways

ATLAS

Leptons

- Lepton $p_T > 20 \text{ GeV}$
- Lepton $|\eta| < 2.5$
- Lepton dressed
- Jets
 - Anti-K_T, R=0.4
 - p_T > 30 GeV (20 GeV also in W+jets)
 - $|\eta| < 4.4$
 - ΔR (jet-lepton) > 0.5

CMS

Leptons

- Lepton $p_T > 20 \text{ GeV}$
- Electron |η| < 2.5, not 1.4442 <
 |η| < 1.566
- Muon $|\eta| < 2.1$
- Lepton at born-level
- Jets
 - Anti-K_T, R=0.5
 - $E_T > 30 \text{ GeV}$
 - $|\eta| < 2.4$
 - ΔR (jet-electron) > 0.3

Phase Space for 2010

- Fiducial cross sections definitions for W and Z selection ATLAS
 CMS
- Z+jets
 - Second lepton p_T > 20 GeV
 - 66 GeV < M_{ll} < 116 GeV
 W+jets
 - Neutrino $p_T > 25 \text{ GeV}$
 - Transverse Mass: M_T > 40 GeV

ATLAS R+jets measurement has some differences, see paper

Z+jets

- Second lepton p_T > 10
 GeV
- 60 GeV < M_{ll} < 120 GeV W+jets
- Transverse Mass: M_T > 50 GeV (no cut at particle-level)

V+jets in CMS

6

- CMS results include
 - W, Z cross sections for $N_{jets} \ge 1-4$
 - Ratios of W/Z cross section for $N_{jets} \ge 1-4$
 - W^+ and W^- cross section for $N_{jets} \ge 1-4$
 - Test of 'staircase scaling'

$$C_n\equiv \frac{\sigma_n}{\sigma_{n+1}}=lpha$$
 ,

$$C_n = \alpha + \beta n$$

$\frac{\sigma(V+\geq n_{jets})}{\sigma(V)} \ (V=W,Z)$	$n_{jets} \ge 1-4$
$\frac{\sigma(V + \geq n_{jets})}{\sigma(V + \geq n_{jets})} (V = W, Z)$	$n_{jets} \ge 1-4$
$\frac{\sigma(W + \geq n_{jets})\sigma(Z)}{\sigma(Z + \geq n_{jets})\sigma(W)}$	$n_{jets} \ge 1-4$
$rac{\sigma(W^+) - \sigma(W^-)}{\sigma(W)} (+ \ge n_{jets})$	$n_{jets} \ge 1-4$

Results from 2010: ATLAS

- Using the full 2010 data set, ATLAS focused on numerous jet-based
- Cross section listed here for W+jets, but similar distributions were also shown for Z +jets
- For precision tests of scale used in α_s calculations
 - Inclusive jet multiplicities and ratio

 $\sigma(W+\ge N \text{ jets}) \cdot Br(W \to l\nu) \qquad \qquad \frac{\sigma(W+\ge N \text{ jets})}{\sigma(W+\ge N-1 \text{ jets})}$

• Differential cross sections as a function of Nth jet p_T

$$\frac{d\sigma(W+\geq K \text{ jets}) \cdot Br(W \to l\nu)}{dp_{\mathrm{T}}(N^{\mathrm{th}} \text{ jet})} \qquad \mathsf{K} = \mathsf{I-4, N} \leq \mathsf{K}$$

• Differential cross sections as a function of H_T (scalar sum of lepton, jet p_T and missing E_T) $\frac{d\sigma(W+ \ge N \text{ jets}) \cdot Br(W \to lv)}{d\sigma(W+ \ge N \text{ jets}) \cdot Br(W \to lv)}$

 $dH_{\rm T}$

• Differential cross sections as a function of the invariant mass of the first N-jets

 $\frac{d\sigma(W+\ge N \text{ jets}) \cdot Br(W \to l\nu)}{dM_{\text{inv}}(N-\text{ jets})}$

Results from 2010: ATLAS

- For tests which are sensitive to PDFs •
 - Rapidity of the leading jet $d\sigma(W + \ge 1 \text{ jets}) \cdot Br(W \rightarrow lv)$

dy(First Jet)

Rapidity difference and sum between lepton and jet

 $d\sigma(W+ \ge 1 \text{ jets}) \cdot Br(W \to l\nu) \quad d\sigma(W+ \ge 1 \text{ jets}) \cdot Br(W \to l\nu)$ d(y(Lepton) - y(First Jet))

d(y(Lepton) + y(First Jet))

- For tests of hard parton radiation at large angles and ME to PS • matching schemes
 - Rapidity difference between first and second jet $d\sigma(W + \ge 2 \text{ jets}) \cdot Br(W \rightarrow lv)$ d(y(First Jet) - y(Second Jet))

Angular separation between first and second jet

 $d\sigma(W + \ge 2 \text{ jets}) \cdot Br(W \to l\nu)$

 $d|\phi(\text{First Jet}) - \phi(\text{Second Jet})|$

Distance in ΔR between first and second jet

 $d\sigma(W + \ge 2 \text{ jets}) \cdot Br(W \to l\nu)$ $dR_{\rm II}$

2010 R+jets Measurement

- Both CMS and ATLAS presented measurements of R +jets in 2010
 - CMS: Measured ratio for $N_{jets} \ge 1-4$
 - ATLAS: Measured ratio for Njets ≥ 1, but as a function of jet threshold
- Measurement significantly reduces main systematic uncertainties
 - R+jets: JES is 1.7% at 100 GeV (ATLAS)
 - W+jets: JES is 10% at 100 GeV (ATLAS)

Key Measurement that we would like to expand using 2011 data

Predictions Used for 2010

• ALPGEN v2.13

- Interfaced to HERWIG v6.510 + JIMMY v4.31 AUET1 tune
- CTEQ61L PDF, MLM matching scale 20 GeV
- SHERPA v1.2.3
 - MT scale, CTEQ6.6 PDF, CKKW matching scale 30 GeV
- Blackhat+Sherpa
 - Scale HT/2, PDF CTEQ6.6
- MadGraph 4.4.13
 - Interfaced to PYTHIA 6.422
 - MT scale, KtMLM matching scale 20 GeV
 - PDF CTEQ6L1

Summary for Results

 In 2010, in general the data for both CMS and ATLAS agree well with the predictions agree well with the predictions ¹⁶ ¹⁷ ¹⁶ ¹⁶ ¹⁷ ¹⁶ ¹

In next slides will only highlight some distributions with 'tension'

Charge Asymmetry

Pythia results disagree for W plus 1-jet
Appears that matching works well for the inclusive measurement but not separately for W⁺ and W⁻

Leading Jet P_Ts

Test of scales used in calculation of α_s
Blackhat, Alpgen better describes data
Sherpa differences could be due to different choice of scale

Rapidity of Leading Jet

PDF Sensitivities

• Sherpa tends to predict high cross section at larger rapidities

14

- Sherpa, Blackhat using NLO PDFs
- Alpgen using LO PDFs

Lepton/Jet Differences

PDF Sensitivities

• Shape is similar for Blackhat, Sherpa with respect to the data

15

• Deviations at high rapidity might be due to insufficient knowledge of gluon PDFs at high x

Differences in phi

For comparison to Tevatron

- A comments on 2010 data: the statistical uncertainties and kinematic reach are similar to those of the Tevatron
 - ATLAS: W+jets $\geq 4.10\%$ statistical
 - D0: W+jets = 4 jets 5% statistical
- 2011 data will truly go beyond

The NLO 'Revolution'

 MCs planned for 2011 Alpgen • Sherpa • Pythia MadGraph MCFM Blackhat+Sherpa • Njets = 4(2010)• Njets = 5(2012)

	3+ years ago	today
W/Z	NNLO	NNLO
V+1j	NLO	NLO+PS
V+2j	NLO	NLO
V+3j	LO	NLO
V+4j	LO	NLO
V+5j	LO	NLO soon

Comparing Data and Theory

Point of comparison is the particle level

From U. Blumenshein's LHC EW talk

Theory Predictions

Need to identify a common approach for • both the prediction's central value and systematic uncertainties

Points to consider

- **PDFs**
- Renormalization / factorization scales
- Matching procedure and scale
- Underlying event model
- Fragmentation
- Hadronization
- Decay tables

Fragmen

100

120 140

160

p_et [GeV]

0.95

0.9

0.85

0.8

40

Some Considerations for NLO

 Some questions to address
 How to produce prediction for inclusive quantities (i.e. H_T)

Inability of fixed-order calculations to model inclusive quantities such as H_T → improved by exclusive sums of NLO calculations

Observables for 2011

Possible observables for comparison/combination

- Properties of individual jets: Jet p_T
- Angular relations between the two leading jets: y, Δy
- W/Z cross sections: vs. N_{jets} , N_{jets}/N_{jets} -1
- Event observables: H_T
- Need to define the details
 - Inclusive or exclusive N_{jets}
 - Normalization to inclusive W/Z cross section
 - Binning

A Common Phase Space: Leptons

Some changes to the lepton selection in 2011 due to trigger requirements
For common phase space, will be following the recommendations from the W/Z inclusive groups

A Common Phase Space: Jets

- Both ATLAS and CMS uses anti-kT algorithm, but with different cone size
 - It is not easy for either experiment to change this
- ATLAS also using a larger rapidity range
- Before the jet clustering
 - CMS removes all neutrinos and muons
 - ATLAS removing neutrinos and leptons from vector boson

Jet Radius

- How to find a common phase space between the two jet radii?
 - Correct to parton-level: Not preferred!
 - The corrections to parton-level would have large uncertainties and strong model dependence
 - Apply a R= $0.4 \Leftrightarrow$ R=0.5 correction
 - This can be done together with corrections to common phase space
 - Relatively safe and simple
 - Uncertainties of particle level correction such UE are small, since correction in the annulus (between 0.4<R<0.5) is small
 - See slides from V. Ciulli and A. Tropiano
- Want to develop a common tool (possibly a RIVET routine) to extrapolate to fiducial volume between the experiments

Conclusions

- ATLAS and CMS have published results for W, Z, and R+jets
 - Overall the predictions agree well with the data
 - Some tension exists at large jet p_Ts and rapidities
- Have several new observables planned for 2011 measurements
- A definition of a combined phase space is being worked on