

(□) (@) (E) (E) E

Measurements of SM VV' Production by ATLAS

Advait Nagarkar The Ohio State University

For The ATLAS Collaboration

21 May 2012

- Diboson processes are important tests of the SM
- Also major backgrounds to new physics processes
- ATLAS measuring the VV' production cross sections in many channels
- Focus here on the decay channels with e, μ and ν in the final states

オロト オポト オミト オミト しき うろくの

Current Measurements by ATLAS

- ► The ATLAS collaboration has measured the production cross sections at $\sqrt{s} = 7$ TeV of:
 - W⁺W[−] in the ℓν_ℓℓ'ν_{ℓ'} channel with both 1.02 fb^{−1} (arXiv:1203.6232, accepted by PLB) and 4.7 fb^{−1} (ATLAS-CONF-2012-025)
 - W[±]Z in the ℓνℓ'ℓ' channel with 1.02 fb⁻¹ (Phys. Lett. B 709 (2012) 341-357)
 - ZZ in the ℓℓℓ'ℓ' channel with 1.02 fb⁻¹ (Phys.Rev.Lett. 108 (2012) 041804) and 4.7 fb⁻¹ (ATLAS-CONF-2012-026)
 - ZZ in the ℓℓνν̄ channel with 4.7 fb⁻¹ (ATLAS-CONF-2012-027)

Current Measurements by ATLAS (ctd.)

 Measured both fiducial cross sections and extrapolated total cross sections as:

$$\sigma_{\text{total}} = \frac{\sigma_{\text{fiducial}}}{A_{VV'}}, \ \sigma_{\text{fiducial}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\mathcal{L} \times \mathcal{B}r \times C_{VV'}}$$
(1)

► Where L is the luminosity, Br is the branching fraction for VV' to decay to the measured channel, C_{VV'} is a measurement efficiency correction factor and A_{VV'} is the theoretical acceptance correction used to extrapolate from the fiducial phase space to the total phase space

イロト イポト イヨト イヨト ヨー わん(

Principles Employed in Constructing Fiducial Volumes: Leptons

- ► The fiducial volumes are all constructed using leptons dressed with all final state photons within a cone of $\Delta R < 0.1$
- Leptons are required to have the same minimum p_T as the reconstructed leptons used in the analysis
- Leptons are required to be within the η range of the muon spectrometer (viz. |η| < 2.7)</p>
- If leptons are required to have tracks, they are required to be within the η range of the tracking detector acceptance (viz. |η| < 2.5)
- In some cases, leptons are further constrained based on calorimeter or trigger coverage

Principles Employed in Constructing Fiducial Volumes: Neutrinos, Jets and Vector Bosons

- Neutrinos:
 - Vector sum p_T constrained in the same way as the reconstructed E_T^{miss}
- Jets:
 - ▶ Jet vetos are defined in terms of jets constructed by applying the anti-k_T algorithm to stable particles after showering and hadronization
 - Jets are only taken when ΔR(ℓ, j) > 0.3, or in the W⁺W[−] case ΔR(e, j) > 0.3
- Vector Bosons:
 - ► Use the same range for the invariant mass of Z, for both selection and veto, as the reconstructed Z candidates
 - \blacktriangleright Use the same range for the transverse mass of $W \to \ell \nu$ as the reconstructed W candidates

Fiducial Volume: $W^+W^- \rightarrow \ell \nu_\ell \ell' \nu_{\ell'}$

- *p*_T of leading lepton must be at least 25 GeV
- *p*_T of sub-leading lepton must be at least 20 GeV
- $p_{\rm T}$ of e in $e\mu$ channel must be at least 25 GeV
- Muons must have $|\eta| < 2.4$ (for trigger coverage)
- Electrons must have $|\eta| < 2.47$ (for calorimeter coverage), excluding the calorimeter transition region $1.37 < |\eta| < 1.52$
- Component of vector sum p_T of neutrinos perpendicular to vector sum p_T of leptons must be at least 55 GeV, 50 GeV or 25 GeV in the μμ, ee and eμ channels respectively (see next slide)
- $m(\ell\ell) > 10(15)$ GeV in $e\mu$ (ee or $\mu\mu$) channels
- Z veto: $|m(\ell \ell) m_{PDG}(Z)| > 15 \text{ GeV}$
- No jets with $p_{\rm T} > 25 \text{ GeV}$

オロトオポトオミトオミト ミークへの

Relative $E_{\rm T}^{\rm miss}$

- As stated on the previous slide, the W⁺W[−] fiducial volume uses the component of neutrino vector sum p_T perpendicular to p_T(ℓℓ)
- This corresponds to the requirement on the relative E^{miss} of reconstructed events
- ► The plot shows the reconstructed values of E^{miss}_T (left) and relative E^{miss}_T (right)

イロト 不同 とくほと 不足と 一足

- $p_{\rm T}$ of Z leptons must be at least 15 GeV
- *p*_T of *W* lepton must be at least 20 GeV
- All leptons must have $|\eta| < 2.5$
- *p*_T of neutrino must be at least 25 GeV
- ► Z decay products must have |m(ℓℓ) m_{PDG}(Z)| < 10 GeV</p>
- ▶ W decay products must have transverse mass of at least 20 GeV

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

- ▶ *p*_T of all leptons must be at least 7 GeV
- All leptons must have $|\eta| < 2.7$
- ▶ Decay products of each Z must have 66 GeV $< m(\ell \ell) < 116$ GeV

オロト オポト オミト オミト しき うろくの

- *p*_T of all leptons must be at least 20 GeV
- All leptons must have $|\eta| < 2.5$
- ▶ $Z \rightarrow \ell \ell$ decay products must have $|m(\ell \ell) m_{\mathsf{PDG}}(Z)| < 15$ GeV
- No jets with $p_{\rm T} > 25~{
 m GeV}$ and $|\eta| < 4.5$
- Component of vector sum p_T of neutrinos antiparallel to vector sum p_T of leptons must be at least 80 GeV (see next slide)
- Difference between magnitudes of vector sum p_T of leptons and neutrinos must be less than 60% of the vector sum p_T of the leptons

- ► As stated on the previous slide, the $ZZ \rightarrow \ell \ell \nu \bar{\nu}$ fiducial volume uses the component of neutrino vector sum p_T anti-parallel to $p_T(\ell \ell)$, since the ZZ are produced back-to-back
- This corresponds to the requirement on the axial E^{miss}_T of reconstructed events
- ► The plot shows the reconstructed values of E^{miss}_T (left) and axial E^{miss}_T (right)

Principles Employed in Cross Section Extrapolation

- Fiducial cross sections are extrapolated to total phase space using acceptance factors (A_{VV}) calculated using MCFM unless fiducial volume includes jet veto
- If fiducial volume includes jet veto, use MC@NLO+HERWIG instead
- The invariant mass of $Z \rightarrow \nu \nu$ is not constrained (since no Z/γ^* interference)
- ► The invariant mass of $Z \rightarrow \ell \ell$ in the extrapolated phase space is restricted to be in the range 66-116 GeV
- ► The ZZ → ℓℓℓ'ℓ' measurement uses zero-width approximation in the Monte Carlo calculation of C_{ZZ} used for the 1 fb⁻¹ measurement. Moving to finite width in 4.7 fb⁻¹ updates.

Extrapolated Cross Sections

- ► The W⁺W⁻ production cross section is 53.4 ± 2.1(stat.)±4.5(syst.)±2.1(lumi.) pb
- ► The W[±]Z production cross section is 20.5^{+3.1}_{-2.8}(stat.)^{+1.4}_{-1.3}(syst.)^{+0.9}_{-0.8}(lumi.) pb
- ► The ZZ production cross section measured in the ℓℓℓ'ℓ' channel is 7.2^{+1.1}_{-0.9}(stat.)^{+0.4}_{-0.3}(syst.)±0.3(lumi.) pb
- ► The ZZ production cross section measured in the ℓℓνν̄ channel is 5.4^{+1.3}_{-1.2}(stat.)^{+1.4}_{-1.0}(syst.)±0.2(lumi.) pb
- All measurements agree with NLO SM predictions

Desired Additional Features in Monte Carlo

- Would like to pursue a consistent FullSim generator for all diboson production studies
- Currently using mix of Sherpa and MC@NLO for FullSim sample and mix of MCFM and MC@NLO for normalization
- ► Would like to have a NLO calculation of VV'+jets in addition to the inclusive calculation
- Currently only have NLO generators in the leptonic decay channels, would like generators that support hadronic decay channels as well

Backup

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 …のへで

Theoretical W^+W^- Cross Section: ATLAS vs. CMS

- ATLAS and CMS differ in the theory prediction
- ATLAS calculates 45.1±2.8 pb and CMS uses the 47.0±2.0(scale) pb from the MCFM paper
- Difference is entirely a product of differing the input to MCFM:
 - ▶ PDF: MSTW8NN vs. CT10 changes $\sigma_{W^+W^-}$ by -2.7%
 - ▶ Scale: dynamic vs. fixed changes $\sigma_{W^+W^-}$ by -2.5%
 - \blacktriangleright EW Scheme: MCFM default vs. ATLAS^1 changes $\sigma_{W^+W^-}$ by +1.3%
 - ▶ Branching Fractions: 0.1075 (MCFM default) versus 0.108 (PDG) changes σ_{W⁺W⁻} by -1%
- Overall difference within MCFM using ATLAS options compared to defaults is -4.6%

LHCEWWG Meeting