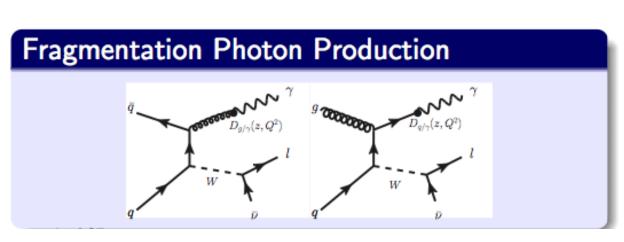
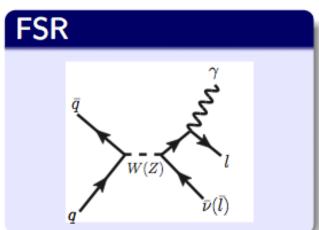

MEASUREMENT OF SM V+GAMMA BY ATLAS

Zhijun Liang
University of Oxford
For the ATLAS Collaboration

Introduction to Wy/Zy physics

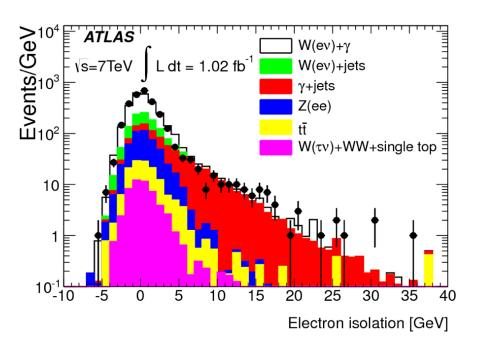

- The Wγ and Zγ productions are direct test of the triple gauge boson (TGC) coupling of the Electroweak theory.
 - probing the WW γ TGC (s channel).
 - probing the existence of ZZγ and Zγγ TGC, which is forbidden at tree level in the Standard Model.
 - Highest cross sections among all diboson processes.


Initial State Radiation(ISR) \bar{q} W(Z) $\bar{v}(\bar{l})$ $\bar{v}(\bar{l})$

Introduction to Wy/Zy physics(2)

- Besides ISR and TGC diagram, other signal contributions include:
 - Final state photon radiation from W(Z) inclusive production.
 - Photons from fragmentation of jets produced in association with a W or a Z boson.
 - Isolated photons from fragmentation/FSR processes are also considered as signal.

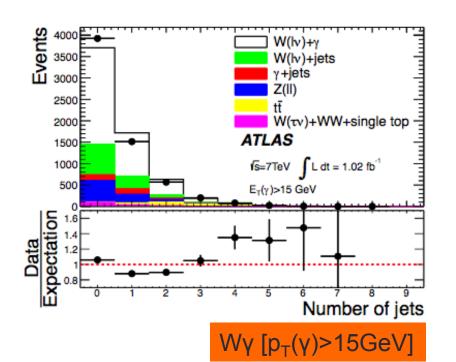
Wγ/Zγ measurements by ATLAS

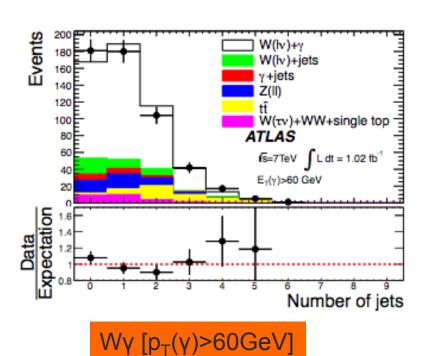

- 2010, Wγ/Zγ cross section measurement
 - 35pb-1
 - JHEP 09 (2011) 072
- 2011, Wγ/Zγ cross section measurement and Limits on the Anomalous Triple-Gauge-Boson Couplings
 - 1fb⁻¹
 - arXiv:1205.2531
 - Submitted to PLB

Event selections

$W\gamma$		$Z\gamma$		
•Trigger : Single lepton trigger, 1.02 fb ⁻¹				
•One good electron or muon n >25GeV		• Two opposite charged leptons		
•One good electron or muon p _T >25GeV		• Two opposite charged leptons		
• Missing $E_T > 25 \text{ GeV}$		$p_T > 25 GeV$		
• Transverse mass $M_T(lepton, v)>40 \text{ GeV}$		•M(l+,l-)>40 GeV		
•Z veto for e channel: $ M(e, \gamma)-M_Z >10GeV$				
Photon Selection Cuts				
•One good isolated photon				
• $E_T > 15$ GeV, $dR(e/\mu, \gamma) > 0.7$, Isolation < 6 GeV				
Jet selection cuts (AntiKt4 jet)				
• $p_T > 30 \text{GeV}, \eta < 4.4$				
• $dR(jet, \gamma) > 0.6$, $dR(jet, leptons) > 0.6$				

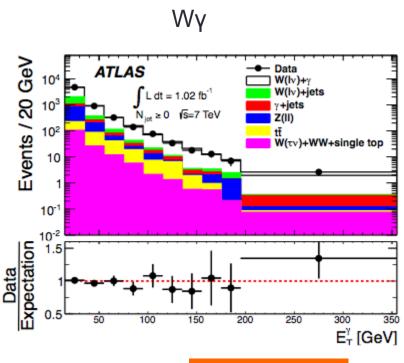
Jet Background estimation


- V+jets and γ+jets backgrounds are estimated from data.
 - Use sideband method based on lepton/photon isolation distribution.



	$pp o e u\gamma$	$pp \to \mu \nu \gamma$		
Region	$E_{\mathrm{T}}^{\gamma} > 1$	l5 GeV		
	$N_{ m jet} \geq 0$			
$N_{W\gamma}^{ m obs}$	2649	3621		
W+jets	439 ± 108	685 ± 162		
$\gamma+{ m jets}$	255 ± 58	67 ± 16		
\mathbf{EW}	405 ± 53	519 ± 67		
t ar t	85 ± 11	152 ± 20		
$N_{W\gamma}^{ m sig}$	1465 ± 139	2198 ± 183		

Jet multiplicity in Vy events


- Jet multiplicity in Wγ candidates increases significantly as photon p_T threshold increases.
- Significant contributions from Wγ+1jet and Wγ+2jets in high photon p_T region.
- MC full simulation can describe the jet multiplicity in data
 - Alpgen are used to generate Wγ+N partons (N=0,1,2,3,4,5)
 - with herwig for parton showering, use Geant4 for detector simulation



Photon p_T distribution in Vγ candidates

- MC full simulation can describe the Photon p_T distribution.
 - Sherpa Zγ+N partons (N=0,1,2,3) are used for Zγ full simulation.

Wγ [Njet>=0]

 $Z\gamma$ [Njet>=0]

arXiv:1205.2531

Fiducial region of Wy/Zy measurement

- Exclusive measurement
 - Fiducial region is defined with hard jet veto in particle levels
 - Apply hard jet veto in offline event selection cuts
- Inclusive measurement: without jet veto
- Three different photon pT threshold.

Cuts	$pp o l u \gamma$	$pp o l^+ l^- \gamma$		
Lepton	$p_{ m T}^l > 25 { m ~GeV}$	$p_{ m T}^l > 25 { m GeV}$		
	$p_{\mathrm{T}}^{ u} > 25~\mathrm{GeV}$			
	$ \eta_l < 2.47$	$ \eta_l < 2.47$		
Boson		$m_{l^+l^-} > 40 {\rm GeV}$		
Photon	Low E	$E_{\rm T}^{\gamma}$: $E_{\rm T}^{\gamma} > 15 \text{ GeV}$		
	Medium E_{T}^{γ} : $E_{\mathrm{T}}^{\gamma} > 60 \text{ GeV}$			
${ m High} E_{ m T}^{\gamma} \colon E_{ m T}^{\gamma} > 100 { m GeV}$				
	$ \eta^{\gamma} < 2.37, \Delta R(l,\gamma) > 0.7$			
	photon isolation fraction $\epsilon_h^p < 0.5$			
Jet	$E_{ m T}^{ m jet} > 30$	$0 \; { m GeV}, \; \eta^{ m jet} < 4.4$		
	$\Delta R(e$	$/\mu/\gamma, \mathrm{jet}) > 0.6$		
	Inclusive : $N^{ m jet}$	≥ 0 , Exclusive : $N^{\rm jet} = 0$		

Cross section measurement methods

Fiducial cross section

- Performed within phase space defined by kinematic cuts of event selection in analysis.
- $\sigma_{W\gamma(Z\gamma)}^{fid} = \frac{N_{W\gamma(Z\gamma)}^{sig}}{C_{W\gamma(Z\gamma)} \cdot L_{W\gamma(Z\gamma)}}$

 - N^{sig}_{Wγ(Zγ)} is the number of the extracted signal events
 C_{Wγ(Zγ)} summarizes the reconstruction and identification efficiency for signal events

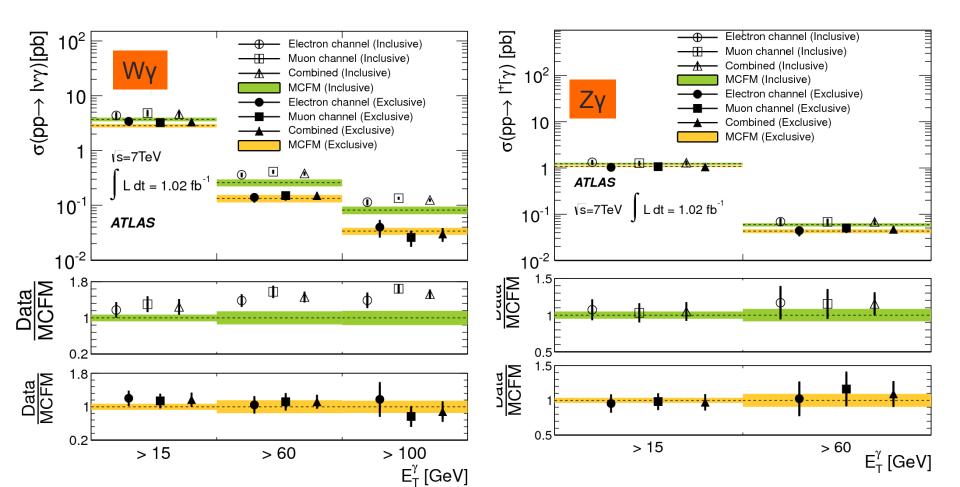
Total cross section

- Extrapolating from fiducial phase space to full W/Z decay space.
- $\circ \ \sigma_{W\gamma(Z\gamma)}^{total} = \frac{\sigma_{W\gamma(Z\gamma)}^{tot}}{A_{W\gamma(Z\gamma)}}$
- $A_{W\gamma(Z\gamma)}$ is acceptance of total phase space respect to fiducial one.
- Use full simulation Monte Carlo to calculate the acceptance.

Main Systematics

- Main Systematics
 - Photon Identification efficiency:
 - 10% in low pT region, 4% in high pT region
 - Photon isolation efficiency: 3%
 - Jet energy scale uncertainty (for exclusive measurement): 5%

Vy Cross section predictions


- Parton level NLO cross section predictions are from MCFM 6.1
- These predictions are corrected for photon isolation and jet definitions difference between parton and particle level:
 - Parton level isolation: (sum of partons energy around cone 0.4 of photons)/ (photon energy)
 - Particle level isolation: (sum of stable truth particles energy around cone 0.4 of photons)/ (photon energy)
 - Parton level jets defintion: hard partons above jet pT threshold
 - Particle level jets: AntiKt 4 truth jet built from stable truth particles above pT threshold
- Parton to particle level corrections factors are taken from $V\gamma$ full simulation samples (Alpgen for $W\gamma$, Sherpa for $Z\gamma$).

Channel	$E_{\mathrm{T}}^{\gamma} \; (\mathrm{GeV})$	Cross section	Cross section
		exclusive	inclusive
$pp o l^\pm u \gamma$	> 15	2.84±0.20 pb	$3.70\pm0.28~{ m pb}$
		$(2.61\pm0.16 \text{ pb})$	$(3.58\pm0.26 \text{ pb})$
$pp o l^\pm u \gamma$	> 60	$134\pm21 \text{ fb}$	$260 \pm 38 \text{ fb}$
		$(118\pm 16 \text{ fb})$	$(255\pm35 \text{ fb})$
$pp o l^\pm u \gamma$	> 100	$34\pm5~\mathrm{fb}$	$82\pm13~\mathrm{fb}$
		$(31\pm 4 \text{ fb})$	$(80\pm12 \text{ fb})$
$pp o l^+ \; l^- \gamma$	> 15	$1.08\pm0.04~{ m pb}$	$1.23\pm0.06~{\rm pb}$
		$(1.03 \pm 0.04 \text{ pb})$	$(1.22\pm0.05 \text{ pb})$
$pp ightarrow l^+ \ l^- \gamma$	> 60	$43\pm4~\mathrm{fb}$	$59\pm5~\mathrm{fb}$
		(40±3 fb)	$(58\pm 5 \text{ fb})$

Particle level prediction (Parton level prediction)

Fiducial cross section measurement

- Inclusive phase space: MCFM based cross section predictions are 30%~40% lower than the measurement in high photon pT region in Wγ process.
- Exclusive phase space:
 - MCFM predictions agrees better with measurement after jet veto selections in Vγ processes.

Future plan

• Wγ

- Missing ET cuts need to increase to 35GeV for rejecting Z background.
- Z veto for e channel: $|M(e, \gamma)-M_z|>15 \text{ GeV}$
- Lepton + photon trigger is used for 8TeV analysis
- Plan to provide more measurement on event shape (unfolded spectrum)
 - Jet multiplicity
 - $|\eta_{lepton} \eta_{\gamma}|$

Ζγ

- Use di-leptons trigger in 8TeV analysis
- Apply ΔR(I+;I-)>0.3 in offline selection and fiducial volume
 - to avoid the acceptance lost due to highly boosted Z.
 - Lepton reconstruction efficiency goes down in low ΔR(I+;I-) region.

Wish list

- NNLO calculation for Vγ processes.
 - Especially for Wγ process.
- NLO calculation for Vγ+1jet / Vγ+2jet
- NLO generator of W+2photons and other triboson processes.
- NLO parton shower Monte Carlo for Vγ processes
 - Jet veto is needed for Vy aTGC study.
 - Very important to have NLO predictions in particle level.
 - aMC@NLO is a good candidate.

Summary

- •Inclusive and exclusive (with jet veto) fiducial measurement for Vγ processes have been performed based on 1fb⁻¹ data collected by ATLAS.
- •Observe significant contributions from events with high jet multiplicity in Wy process.
- •MCFM based NLO cross section predictions are 30~40% lower than the inclusive measurement for Wγ process.
 - MCFM predictions agrees better with exclusive measurement for Wγ process after jet veto selections are applied.
- Wish for higher order calculations (NNLO or beyond) for Vγ processes.