

### CLIC workshop "Two beam hardware and integration" working group

### Module layout and main requirement

G. Riddone, A. Samoshkin

17.10.2007



# Content

- Introduction and general CLIC parameters
- Layout
- Main system requirement
- Tunnel integration
- Conclusions



# Introduction



# Several activity domains



4



# **CLIC** layout





# Main parameters

| Overall parameter                          |                      |                                  |
|--------------------------------------------|----------------------|----------------------------------|
| center of mass energy                      | 3                    | Tev                              |
| main linac RF frequency                    | 11.994               | GHz                              |
| luminosity                                 | 5.9x10 <sup>34</sup> | cm <sup>-2</sup> s <sup>-1</sup> |
| unloaded/loaded gradient                   | 120/100              | MV/m                             |
| proposed site length                       | 47.9                 | km                               |
| overal two linac length                    | 41.7                 | km                               |
|                                            |                      |                                  |
| Main linac                                 |                      |                                  |
| filling factor                             | 78.6                 |                                  |
| accelerator structure length               | 229                  | mm                               |
|                                            |                      |                                  |
| Decelerator                                |                      |                                  |
| No. of drive beam sector/linac             | 24                   |                                  |
| Drive beam sector length                   | 868                  | m                                |
| No. of PETS per sector                     | 1491                 |                                  |
| Length of PETS (active)                    | 213                  | mm                               |
| Nominal output RF power /PETS              | 136                  | MW                               |
| Transfer effeiciency PETS - acc. structure | 93.8                 | %                                |
| No. of acc. structure / PETS               | 2                    |                                  |
| Main beam acc. power / PETS                | 2x63.9               | MW                               |
| Energy (injection                          | 2.38                 | Gev                              |
| Energy (final)                             | 238                  | MeV                              |

| Module                                                                                                                                 |                                                                                              |                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| No. of module per sector                                                                                                               | 428                                                                                          |                                                      |  |
| No. of module per linac                                                                                                                | 10275                                                                                        |                                                      |  |
| No. of modules (2 linacs)                                                                                                              | 20549                                                                                        |                                                      |  |
|                                                                                                                                        |                                                                                              |                                                      |  |
|                                                                                                                                        | Acc. structure PETS                                                                          |                                                      |  |
| No. per sector                                                                                                                         | 2982                                                                                         | 1491                                                 |  |
| No. per linac                                                                                                                          | 71568                                                                                        | 35784                                                |  |
| No. (2 linacs)                                                                                                                         | 143136                                                                                       | 71568                                                |  |
| · · ·                                                                                                                                  |                                                                                              |                                                      |  |
|                                                                                                                                        |                                                                                              |                                                      |  |
|                                                                                                                                        | Standard                                                                                     |                                                      |  |
| Modules                                                                                                                                | Standa                                                                                       | rd                                                   |  |
| <i>Modules</i><br>No. per linac                                                                                                        | Standa<br>8274                                                                               | rd                                                   |  |
| <i>Modules</i><br>No. per linac<br>No. (2 linacs)                                                                                      | Standa<br>8274<br>16547                                                                      | rd                                                   |  |
| <i>Modules</i><br>No. per linac<br>No. (2 linacs)                                                                                      | Standa<br>8274<br>16547                                                                      | rd<br>                                               |  |
| <i>Modules</i><br>No. per linac<br>No. (2 linacs)<br><i>Modules</i>                                                                    | Standa<br>8274<br>16547<br>type 1                                                            | rd<br>type 2                                         |  |
| <i>Modules</i><br>No. per linac<br>No. (2 linacs)<br><i>Modules</i><br>No. per linac                                                   | Standa<br>8274<br>16547<br>16547<br>16547<br>16547                                           | rd<br>,<br>,<br>type 2<br>664                        |  |
| <i>Modules</i><br>No. per linac<br>No. (2 linacs)<br><i>Modules</i><br>No. per linac<br>No. (2 linacs)                                 | Standa<br>8274<br>16547<br><b>type 1</b><br>143<br>286                                       | rd<br>type 2<br>664<br>1328                          |  |
| <i>Modules</i><br>No. per linac<br>No. (2 linacs)<br><i>Modules</i><br>No. per linac<br>No. (2 linacs)                                 | Standa<br>8274<br>16547<br><b>type 1</b><br>143<br>286                                       | rd<br>type 2<br>664<br>1328                          |  |
| <b>Modules</b><br>No. per linac<br>No. (2 linacs)<br><b>Modules</b><br>No. per linac<br>No. (2 linacs)<br><b>Modules</b>               | Standa<br>8274<br>16547<br><b>type 1</b><br>143<br>286<br><b>type 3</b>                      | rd<br>type 2<br>664<br>1328<br>type 4                |  |
| Modules<br>No. per linac<br>No. (2 linacs)<br>Modules<br>No. per linac<br>No. (2 linacs)<br>Modules<br>No. per linac                   | Standa<br>8274<br>16547<br><b>type 1</b><br>143<br>286<br><b>type 3</b><br>474               | rd<br>type 2<br>664<br>1328<br>type 4<br>720         |  |
| Modules<br>No. per linac<br>No. (2 linacs)<br>Modules<br>No. per linac<br>No. (2 linacs)<br>Modules<br>No. per linac<br>No. (2 linacs) | Standa<br>8274<br>16547<br><b>type 1</b><br>143<br>286<br>286<br><b>type 3</b><br>474<br>948 | rd<br>type 2<br>664<br>1328<br>type 4<br>720<br>1440 |  |



# Layout







Accelerating structures: × 143000



G. Riddone, CLIC07 workshop, 17.10.2007

Power extraction and transfer energy PETS: x 71500





# Quadrupole type modules

### Type 1 (x 286)





G. Riddone, CLIC07 workshop, 17.10.2007



# Quadrupole type modules



G. Riddone, CLIC07 workshop, 17.10.2007



# CLIC module





Type 1 quadrupole module



G. KIUUUHE, CLICO7 workshop, 17.10.2007



# Standard module



### Main beam

8 accelerating structures

### **Drive beam**

4 PETS (1x 2 acc. str.) 2 quadrupoles



# Module cross-section



G. Riddone, CLIC07 workshop, 17.10.2007



# Module top-view





# Main components



## Main components: structures

### Accelerating structure (A. Grudiev)

| Structure                                                                               | CLIC_G                |
|-----------------------------------------------------------------------------------------|-----------------------|
| Frequency: f [GHz]                                                                      | 12                    |
| Average iris radius/wavelength: $<\!\!a\!\!>\!\!/\lambda$                               | 0.11                  |
| Input/Output iris radii: <i>a</i> <sub>1,2</sub> [mm]                                   | 3.15, 2.35            |
| Input/Output iris thickness: d <sub>1,2</sub> [mm]                                      | 1.67, 1.00            |
| N. of reg. cells, str. length: $N_c$ , $l$ [mm]                                         | 24, 229               |
| Bunch separation: $N_s$ [rf cycles]                                                     | 6                     |
| Luminosity per bunch X-ing: $L_{b^{\times}}$ [m <sup>-2</sup> ]                         | 1.22×10 <sup>34</sup> |
| Bunch population: N                                                                     | 3.72×10 <sup>9</sup>  |
| Number of bunches in a train: $N_b$                                                     | 312                   |
| Filling time, rise time: $\tau_f$ , $\tau_r$ [ns]                                       | 62.9, 22.4            |
| Pulse length: $\tau_p$ [ns]                                                             | 240.8                 |
| Input power: P <sub>in</sub> [MW]                                                       | 63.8                  |
| P <sub>in</sub> /Ct <sup>P</sup> <sub>p</sub> <sup>1/3</sup> [MW/mm ns <sup>1/3</sup> ] | 18                    |
| Max. surface field: $E_{surf}^{\max}$ [MV/m]                                            | 245                   |
| Max. temperature rise: $\Delta T^{max}$ [K]                                             | 53                    |
| Efficiency: η [%]                                                                       | 27.7                  |
| Figure of merit: $\eta L_{\mathfrak{z} \times} / N$ [a.u.]                              | 9.1                   |









### Main components: Quadrupoles

### **Drive beam**



Aperture radius:13.0 mmIntegrated gradient:14.3 Tm/mNominal gradient:67.1 T/mTotal length: 270 mm390 mmMagnet width:390 mmMagnet weight:180 kgDistance between opposite coils:118 mmWater cooling390 mm

### Main beam



Aperture radius: Integrated gradient: Nominal gradient: Total length: Magnet width: Magnet height: Magnet weight: Water cooling 4.00 mm 70 (170, 270, 370 ) Tm/m 200 T/m 420 (920, 1420, 1920) mm < 200 mm < 200 mm ~ 75 (110, 135, 270) kg

See talk T. Zickler



• Waveguide connection between PETS and accelerating structures:

-Choke mode flanges (see talk D. Carrillo)

- High power loads
- Waveguides
- External supports
- Vacuum equipment
- Alignment equipment









- Structure fabrication and assembly
- RF network definition
- Alignment/supporting system (close collaboration with beam dynamics working group)
- Stabilization system
- Vacuum system
- Cooling system
- BPM definition and beam instrumentation

These activities have to be developed in close collaboration with integration study

→ tunnel integration, transport and installation



# Tolerances

Tolerances of the structures:

| 4 kinds of tolerances:<br>Machining $(\Delta x, \Delta y, \Delta z)$ (see talk of M.<br>Taborelli)<br>Assembly $(\Delta x, \Delta y, \Delta z)$<br>Alignment $(\Delta x, \Delta y, \Delta z)$<br>Operation [Cooling] $(\Delta T (t) water in, \Delta T (z))$ | Predictable: operational<br>temperature, longitudinal<br>elongation, transverse elongation |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 3 kinds of problems<br><i>Alignment (wakefield effects)</i><br><i>Bookshelf (transverse kick)</i><br><i>RF matching (reflected power, phase errors)</i>                                                                                                      | Unpredictable: water<br>temperature instability, RF<br>power variation                     |



### Alignment system



BEAM-BASED ALIGNMENT 6) relative position of structure and BPM reading

5 µm 10



# Stabilisation system

- Performance will be limited by vibration of the focusing quadrupoles
- More stringent requirement in vertical direction (CLIC note 530)

Stability requirements (> 4 Hz) for a 2% loss in luminosity

| Magnet                | Ix    | ly     |
|-----------------------|-------|--------|
| Linac (2600 quads)    | 14 nm | 1.3 nm |
| Final Focus (2 quads) | 4 nm  | 0.2 nm |

Need active damping of vibrations

- Resistive quadrupoles → they incorporate water cooling circuits, which will increase the vibration level of the quadrupoles → cooling induced vibration
  - preliminary promising tests done (CLIC NOTE 578)
  - But detailed study and dedicated development required



G. Riddone, CLIC07 workshop, 17.10.2007



- Main beam and drive beam: same vacuum → via waveguide interconnections
- Requirement dictated by beam dynamics
  - 10<sup>-10</sup> mbar for transfer lines
  - 10<sup>-8</sup> mbar could be accepted for main beam
- Pumping
  - during nominal operation
  - during breakdown
  - P recovery between breakdowns (main beam 8 m<sup>2</sup> surface to pumped)
- Pre-evacuation: Mobile TM stations (access needed)
- Holding pumps: Ion + Sublimation pumps
- Sectorisation  $\rightarrow$  length of sector determined by
  - Operation: in case of failure or modification all the length vented = > reconditionning. Failure rate?
  - Additional space required (~ 20 cm)
  - Additional cost



# Supporting system

- Mechanical and thermal stability required
- Main beam

Accelerating structures on girders

- Girder attached to cradles at the two extremities
- Alignment system integration (pre- and beam based alignment)
- Main beam quadrupole on dedicated supports
  - Stabilisation and alignment system integration
- Drive beam
  - PETS and quadrupoles on the same girders
  - Pre-alignment system integration
- Cradles mechanically attached to a girder and linked by rods to the adjacent one

G. Riddone, CLIC07 workshop, 17.10.2007





# Cooling system

- Water cooling for accelerating structures, quadrupoles and loads
- Water cooling for PETS to be confirmed
- Different operation modes to be taken into account
- More stringent requirement: cooling of the acc. structures (~ 600 W/as)
  - Different cooling configurations according to under study
    → consequence on the needed volumetric flow
- Temperature stabilisation +/- 0.1 K
- Temperature drop across acc. structure: 1.5 K





## Beam instrumentation

|                                | Main beam                                                                      |                                                                                          | Drive beam                                                                      |
|--------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                | Wakefield Monitor                                                              | Quadrupole                                                                               | Quadrupole                                                                      |
| Where                          | Center                                                                         | Before                                                                                   | Before                                                                          |
| How many                       | 4                                                                              | 0 or 1                                                                                   | 2                                                                               |
| Туре                           | Damped cavity                                                                  | Damped cavity,<br>Re-entrant cavity,<br>Inductive, ?                                     | Damped cavity, Re-<br>entrant cavity,<br>Inductive, ?                           |
| Bunch frequency                | 1.5GHz                                                                         | 1.5GHz                                                                                   | 12GHz                                                                           |
| Meas. frequency                | 16GHz                                                                          | DC or N*1.5GHz                                                                           | DC or 12GHz                                                                     |
| Max Q <sub>L</sub> (Wakefield) | 10                                                                             | ~10*nb of cells?                                                                         | 1?                                                                              |
| Max Q <sub>L</sub> (Time res.) | 500                                                                            | 500                                                                                      | 500                                                                             |
| Requirements                   | Time resolution: 10ns<br>Resolution: 1um<br>Precision: 10um<br>Aperture: 6.0mm | Time resolution: 10ns<br>Resolution: 100nm<br><u>Precision: 10um</u><br>Aperture: 4.16mm | Time resolution: 10ns<br>Resolution: 1um<br>Precision: 10um<br>Aperture: 23.0mm |
| Available length               |                                                                                | 80 (60)mm??                                                                              | 109mm / 79mm                                                                    |
| Electronics                    | Hybrid very close.<br>Mixers + in alcove                                       | Inductive: Active<br>hybrid very close to<br>avoid errors due to<br>cables               |                                                                                 |



See talks of L. Soby, G. Montoro



# **Tunnel integration**



## CLIC tunnel cross section





workshop, 17.10.2007



## Drive beam return loop







# Conclusions

- Dedicated development programs of systems including, micron precision pre-alignment, nanometer stabilization, cooling, vacuum, beam instrumentation, active alignment and beam dynamics, etc. are needed
- An important issue is the integration of these various systems into the CLIC module which will be repeated over twenty thousand times along the length of CLIC → optimization, reliability, scheduling (see talk of M. Gastal) and cost
- The module study raises feasibility issues, identifies areas needing study and design, addresses important aspects of cost and provides basic parameters for other areas of the study
- Test module in CLEX from 2008 (see talks of K. Alam and F. Toral [TBL]):
  - System integration
  - Alignment system
  - Stabilization system



# **CLEX** layout



G. F workshop, 17.10.2007



### Acknowledgment to the members of the CLIC module working group

#### Layout

- W. Wuensch
- I. Syratchev: PETS
- A. Grudiev: accelerating structures
- T. Zickler: Quadrupoles
- Transfer lines: B. Jeanneret, L. Rinolfi

#### Module integration

- A. Samoshkin, R. Leuxe
- T. Sahner M. Taborelli
- W. Wuensch

#### Vacuum system

- P. Costa-Pinto P. Chiggiato
- N. Hilleret

### Alignment/supporting system

- H. Mainaud-Durand T. Touzet (survey/alignment)
- R. Nousiainen (supports)
- J. Huopana (structure assembly)

### Cooling system

• J. Inigo-Golfin, R. Nousiainen

### Beam dynamics and stabilisation

• D. Schulte

### Beam instrumentation

L. Søby

### PETS on-off mechanism

B. Nicquevert

### Tunnel integration, installation

- J. Osborne
- G. Riddone, A. Samoshkin

### Radiation

• H. Vincke

### Cost estimate

• G. Riddone