

CLIC Workshop CERN, October 18 2007

Michelangelo Mangano

Theory Unit, Physics Department, CERN michelangelo.mangano@cern.ch

Summary of discovery potential for Higgs and SUSY with < 10 fb-1

By 2010-11 we should already have a good picture of TeV-scale physics!

WHAT'S NEXT?

time scale of LHC upgrade

(1) life expectancy of LHC IR quadrupole magnets is estimated to be <10 years due to high radiation doses
 (2) the statistical error halving time will exceed 5 years by 2011-2012

(3) therefore, it is reasonable to plan a machine luminosity upgrade based on new low-ß IR magnets before ~2014

Why will we need more integrated luminosity after LHC's first phase?

- 1. Improve measurements of new phenomena seen at the LHC. E.g.
 - Higgs couplings and self-couplings
 - Properties of SUSY particles (mass, decay BR's, etc)
 - Couplings of new Z' or W' gauge bosons (e.g. L-R symmetry restoration?)
- 2. Detect/search low-rate phenomena inaccessible at the LHC. E.g.:
 - $H \rightarrow \mu^+ \mu^-, H \rightarrow Z\gamma$
 - top quark FCNCs
- 3. Push sensitivity to new high-mass scales. E.g.
 - New forces (Z', W_R)
 - Quark substructure

Why will we need more integrated luminosity after LHC's first phase?

- 1. Improve measurements of new phenomena seen at the LHC. E.g.
 - Higgs couplings and self-couplings
 - Properties of SUSY particles (mass, decay BR's, etc)
 - Couplings of new Z' or W' gauge bosons (e.g. L-R symmetry restoration?)
- 2. Detect/search low-rate phenomena inaccessible at the LHC. E.g.:
 - $H \rightarrow \mu^+ \mu^-, H \rightarrow Z \gamma$
 - top quark FCNCs
- 3. Push sensitivity to new high-mass scales. E.g.
 - New forces (Z', W_R)
 - Quark substructure

Very high masses, energies, rather insensititive to high-lum environment. Not very demanding on detector performance Slightly degraded detector performance tolerable

Why will we need more integrated luminosity after LHC's first phase?

- I. Improve measurements of new phenomena seen at the LHC. E.g.
 - Higgs couplings and self-couplings
 - Properties of SUSY particles (mass, decay BR's, etc)
 - Couplings of new Z' or W' gauge bosons (e.g. L-R symmetry restoration?)
- 2. Detect/search low-rate phenomena inaccessible at the LHC. E.g.:
 - $H \rightarrow \mu^+ \mu^-, H \rightarrow Z\gamma$
 - top quark FCNCs
- 3. Push sensitivity to new high-mass scales. E.g.
 - New forces (Z',W_R)
 - Quark substructure

Energies/masses in the few-100 GeV range. Detector performance at SLHC should equal (or improve) in absolute terms the one at LHC

Very high masses, energies, rather insensititive to high-lum environment. Not very demanding on detector performance Slightly degraded detector performance tolerable

IF SM, then the Higgs boson will be seen with $\int L \leq 15 \text{ fb}^{-1}$

- SM production and decay rates well known
- Detector performance for SM channels well understood
- 115< m_{H} < 200 from LEP and EW fits in the SM

IF seen with SM production/decay rates, but outside SM mass range:

- new physics to explain EW fits, or
- problems with LEP/SLD data

In either case,

 easy prey with low luminosity up to ~ 800 GeV, but more lum is needed to understand why it does not fit in the SM mass range!

IF NOT SEEN UP TO $m_H \sim 0.8$ -1 TeV GEV:

```
\sigma < \sigma_{SM}: \Rightarrow new physics
```

or

```
BR(H→visible) < BR<sub>SM</sub>: ⇒ new physics
```

or

m_H>800 GeV: expect WW/ZZ resonances at $\sqrt{s} \sim \text{TeV} \Rightarrow$ **new physics**

Sorting out these scenarios will take longer than the SM H observation, and may well require SLHC luminosities, and/or LC

Vector resonance (ρ -like) in W_LZ_L scattering from Chiral Lagrangian model M = 1.5 TeV, leptonic final states, 300 fb⁻¹ (LHC) vs 3000 fb⁻¹ (SLHC)

Searching new forces: W', Z'

E.g. a W' coupling to R-handed fermions, to reestablish at high energy the R/L symmetry

Differentiating among different Z' models:

l 00 fb⁻¹ discovery reach up to ~ 5.5 TeV

100 fb⁻¹ model discrimination up to 2.5 TeV

Ex: Precise determinations of the self-couplings of EW gauge bosons

5 parameters describing weak and EM dipole and quadrupole moments of gauge bosons. The SM predicts their value with accuracies at the level of **10⁻³**, which is therefore the goal of the required experimental precision

🔺 d

(LO rates, CTEQ5M, $k \sim 1.5$ expected for these final states)						
Process	WWW	WWZ	ZZW	ZZZ	WWWW	WWWZ
$N(m_H = 120 \text{ GeV})$	2600	1100	36	7	5	0.8
$N(m_{H} = 200 \text{GeV})$	7100	2000	130	33	20	1.6

10

LHC IR Upgrade Path for high-L

<u>Phase 1</u>: consolidation of 'ultimate' performance with L > 10^{34} cm⁻²sec⁻¹ -large aperture NbTi triplet magnets using existing spare dipole cables with the goal of introducing additional margins for the LHC operation -no modifications of the experiment interface and cryogenic infrastructure -opening the option for operation with $\beta^* = 0.25$ m and the LHC 'ultimate' beam parameters yielding a performance reach of L = 3×10^{34} cm⁻² sec⁻¹

Phase 2:

-aims at operation beyond ultimate luminosity (L = 10^{35} cm⁻² sec⁻¹ but the goal is integrated L!!!)

-implies operation in extremely radiation hard environment (35 MGy/year[@]) (less than I year lifetime for magnets with nominal triplet layout!)

new magnet technology and /or special protection / absorber elements

Courtesy of O. Brüning

Phase-2 Upgrade Options

ES (early separation): Low β^* (8cm[@] \rightarrow 14cm^{\$}) with 'ultimate' beam parameters requiring significant hardware modifications in the IR & detector regions (25ns)

- D0 dipole at 3m from IP
- Q0 quads at 13 m from IP, Nb₃Sn
- ~300 evts/Xing

LPA (large piwinski angle): operation with larger than 'ultimate' beam intensities and 'flat bunches' but without modifications in the detector regions (50ns)

- $\beta^* = 25$ cm , longer bunches, high charge
- standard **Nb Ti** quads, no crabs
- ~400 evts/Xing

Courtesy of O. Brüning

Phase 2 Beam Parameter Options[@]

parameter	nominal	ultimate	ES (25ns)	LPA (50ns)
Protons per bunch	1.15 10 ¹¹	1.7 10 ¹¹	1.7 10 ¹¹	4.9 10 ¹¹
Total beam current	0.58 A	0.86 A	0.86 A	1.22 A
Longitudinal bunch profile	Gauss	Gauss	Gauss	Flat
β [*] at the IPs	0.55m	0.5m	8cm (→14cm)	25cm
Full crossing angle at the IPs	285µrad	315µrad	0μrad	381 μrad
Peak luminosity [cm ⁻² sec ⁻¹]	1 10 ³⁴	2.3 10 ³⁴	15.5 10 ³⁴	10.7 10 ³⁴
Peak events per crossing	19	44	294	403
Initial luminosity lifetime	25h	14h	2.2h (wo leveling)	4.5h (wo leveling)
Stored beam energy	370MJ	550MJ	550MJ	780MJ
Stored beam energy Additional requirements	370MJ -	550MJ -	550MJ Large aperture triplet magnets	780MJ Large aperture triplet magnets
Stored beam energy Additional requirements	370MJ -	550MJ -	550MJ Large aperture triplet magnets Efficient absorbers / radiation hard	780MJ Large aperture triplet magnets Efficient absorbers / radiation hard
Stored beam energy Additional requirements	370MJ -	550MJ -	550MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators)	780MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators)
Stored beam energy Additional requirements	370MJ -	550MJ -	550MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators) D0	780MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators)
Stored beam energy Additional requirements	370MJ -	550MJ -	550MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators) D0 Crab cavities	780MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators)
Stored beam energy Additional requirements	370MJ -		550MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators) D0 Crab cavities luminosity levelling	780MJ Large aperture triplet magnets Efficient absorbers / radiation hard (wire compensators) flat beam operation

Courtesy of O. Brüning

@LUMI'06 workshop proceedings

initial luminosity peak may not be useful for physics (set up & tuning?)

<u>luminosity leveling:</u> (plot from F. Zimmermann in Beam'07 studied by G Sterbini & J-P Koutchouk)

- potential loss of integrated luminosity due to initial luminosity tuning
- ➔ short luminosity life time
- → high event rate at beginning of run
- → changing the luminosity during a physics run can counter act the above problems for the price of a small loss in integrated luminosity (ca. 10% for T_{turn} = 5h [G. Sterbini & J-P Koutchouk Beam'07])
- → luminosity variation can be done either via β^* (difficult in operation [Tevatron]) or crossing angle adjustments

→ feasibility and efficiency not yet demonstrated in real operation

Courtesy of O. Brüning

LHC Performance Evolution: Integrated Luminosity@

nominal: L = 10³⁴ cm⁻² sec⁻¹

$$\Rightarrow$$
 T_{turn} = 10h; τ_{lumi} = 15h \Rightarrow L_{integrated} = 70 fb⁻¹
 \Rightarrow T_{turn} = 5h; τ_{lumi} = 15h \Rightarrow L_{integrated} = 80 fb⁻¹ \Rightarrow weak impact of T_{turn}
ultimate: L = 2.3 × 10³⁴ cm⁻² sec⁻¹
 \Rightarrow T_{turn} = 10h; τ_{lum} = 10h \Rightarrow L_{integrated} = 127 fb⁻¹
 \Rightarrow T_{turn} = 5h; τ_{lumi} = 10h \Rightarrow L_{integrated} = 155 fb⁻¹ \Rightarrow moderate impact of T_{turn}
Phase IIa: L = 15.5 × 10³⁴ cm⁻² sec⁻¹ (Lumi'06 in Valencia)
 \Rightarrow T_{turn} = 10h; τ_{lum} = 2.5h \Rightarrow L_{integrated} = 374 fb⁻¹
 \Rightarrow T_{turn} = 5h; τ_{lumi} = 2.5h \Rightarrow L_{integrated} = 535 fb⁻¹ \Rightarrow big impact of T_{turn} (50%)

Phase IIb: L = 6.2 × 10³⁴ cm⁻² sec⁻¹ (BEAM'07 at CERN) → T_{turn} = 5h; τ_{lumi} = 7h → L_{integrated} = 370 fb⁻¹ → still significant impact of T_{turn} → only efficient with luminosity leveling and if T_{turn} ≤ 5h

[@]O Brüning at Beam'07 assuming 200 days of operation per year

Courtesy of O. Brüning

Benchmarks for detector performance at SLHC

The performance at 10³⁴ should be taken as a minimal reference goal

Object	Physics benchmark	Performance benchmark	Detector issue
b jets & tau	Higgs identification, BR measurements	Tagging efficiency vs purity (statistics and bg suppression)	Tracking Pileup
b jets	Higgs mass determination, bg suppression	Mass resolution in the ~ I-few x 100 GeV region	Pileup Final focus magnets:
fwd jets	Vector boson fusion: - measure H couplings - if no H, search strong WW phenomena	 jet tagging efficiency/fake rate vs jet E_T jet E_T resolution 	 acceptance bg resolution Pileup
cen jets	Jet vetoes for vector boson fusion	fake rate	Pileup
	Mass spectroscopy	mass resolution	Pileup
electrons	W/Z ID, SUSY decays, etc W'/Z' properties	ID efficiency vs fake rate	Pileup
nuons	W/Z ID, SUSY and H decays, W'/Z' properties, etc.	Forward acceptance, fake rate	albedo forward efficiency final focus geometry

16

ľ

Luminosity vs energy

Comments

- Whether Energy or Luminosity is a better upgrade path depends on where and what the new physics is (unless Lum is allowed to increase with E as Lum ∝ S).
 - E.g. a 2 TeV Z' is requires more statistics, rather than more E

- I4 → 28 TeV is great, I4 → 42 is even better, but 28 → 42 is probably not worth the cost, thus I4 → 28 → 42 unlikely
 - R&D on all possible future SC magnets should develop in parallel to make the 42 TeV option a viable possibility

SUSY Beyond the LHC: ILC/CLIC

Example:

Exploration of the Supersymmetric particle spectrum, for 10 different SUSY models

Reference: Physics at CLIC, Battaglia, De Roeck, Ellis, Schulte eds., hep-ph/0412251

The power of the LC would be even more remarkable if one looked at the fine structure of the SUSY skyline

Squark flavour spectroscopy:

$$\begin{array}{ccccc} m_{\tilde{t},L} & \mathrm{VS} & m_{\tilde{t},R} \\ m_{\tilde{b},L} & \mathrm{VS} & m_{\tilde{b},R} \\ m_{\tilde{t},\tilde{b}} & \mathrm{VS} & m_{\tilde{u},\tilde{d},\tilde{s},\tilde{c}} \end{array}$$

Squark CKM:

$$\widetilde{t} \longrightarrow W \widetilde{b}$$

 $\widetilde{q}' \longrightarrow \widetilde{q}$

Slepton spectroscopy and mixing:

$$\tilde{\ell}' \to \chi^0 \ell$$

Gaugino spectroscopy:

$$m(\chi^{\pm}_{1,2}) \quad m(\chi^{0}_{1,...,4})$$

The power of the LC would be even more remarkable if one looked at the fine structure of the SUSY skyline

Squark flavour spectroscopy:

$$\begin{array}{ccccc} m_{\tilde{t},L} & \mathrm{VS} & m_{\tilde{t},R} \\ m_{\tilde{b},L} & \mathrm{VS} & m_{\tilde{b},R} \\ m_{\tilde{t},\tilde{b}} & \mathrm{VS} & m_{\tilde{u},\tilde{d},\tilde{s},\tilde{c}} \end{array}$$

Squark CKM:

$$ilde{t} o W ilde{b} \ ilde{q}' o ilde{q}$$

Slepton spectroscopy and mixing:

$$\tilde{\ell}' \to \chi^0 \ell$$

Gaugino spectroscopy:

$$m(\chi_{1,2}^{\pm}) \quad m(\chi_{1,...,4}^{0})$$

H⁰ H⁰ •-, Н0 e σ(e⁺e⁻ → HH·w) (fb) σ[ΗΗνν] √s=5 TeV √s=3 TeV 10 √s=1 TeV 10 120 140 160 180 200 220 240 260 280 M_H (GeV)

Expected accuracy, ILC

Coupling	$m_H = 120 \text{ GeV}$	$m_H = 140 \text{ GeV}$
g_{HWW}	± 0.012	± 0.020
g_{HZZ}	± 0.012	± 0.013
g_{Htt}	± 0.030	± 0.061
g_{Hbb}	± 0.022	± 0.022
g_{Hcc}	± 0.037	± 0.102
$g_{H\tau\tau}$	± 0.033	± 0.048

Expected accuracy, CLIC@3TeV, 5ab⁻¹

Parameter	M_H (GeV)	$\delta X/X$
$\delta g_{Hu}/g_{Hu}$	120-180	0.05-0.10
$\delta g_{Hbb}/g_{Hbb}$	180-220	0.01-0.03
$\delta g_{H\mu\mu}/g_{H\mu\mu}$	120-150	0.03-0.10
δg _{HHH} /g _{HHH}	120-180	0.07-0.09
<i>9нннн</i>	120	≠0(?)

What will be the main driving theme of the exploration of new physics ?

the gauge sector (Higgs, EWSB)

the flavour sector (v mixings, CPV, FCNC, EDM, LFV)

The High Energy Frontier

LHC SLHC VLHC LC CLIC

....

The High Intensity Frontier

Neutrinos:

super beams beta-beams V factory

Charged leptons

stopped μ $\ell \rightarrow \ell'$ conversion

e/μ EDM

Quarks: B factories K factories n EDM

Conclusions

- Particle physics is on the verge of **major discoveries**
- The TeV scale plays a crucial role for PP.
 - m_H is expected to be below I TeV, and within LHC's reach
 - but the dynamics of EWSB could manifest itself only at larger scales, O(few TeV) (see Grojean talk)

demands for a xI0 increase in the energy reach (CLIC, VLHC) will likely be fully justified few years from now

- The complete exploration of new phenomena will not only require pushing the energy frontier, but also the intensity frontier, with a diversified spectrum of higher-performance low-energy flavour factories
- In the meantime, let us enjoy the forthcoming output of many years of work on the LHC, and make sure it bear fruits!