

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

# Molecular dynamics simulations of surface damage in CLIC?

### Flyura Djurabekova and Kai Nordlund

Accelerator Laboratory, Department of Physical Sciences University of Helsinki, Finland

Member of the Academy of Finland Centre of Excellence in Computational Molecular Sciences 2006 – 2011; Project partners in the HIP theory programme 2008-2011



- MD simulations: features and feasibility
- Agreement of the previous MD predictions to experimental results
- Relevance to CLIC component damage?
- Plans and an algorithm for the model of spontaneous roughening
- Timetable



## Ion and cluster irradiation of materials

- We come from accelerator laboratories focusing on materials physics
- Basic question: what happens when an ion or cluster ion accelerated to an energy of 10 eV – 50 MeV enters a material:
  - Damage on surface? Damage in bulk?
  - Beneficial effects: doping of semiconductors, optical effects...



Flyura Djurabekova, Accelerator Laboratory, University of Helsinki



## **Atomistic simulations of irradiation effects**

Atomistic simulations can give insight into what really happens when energetic particles interact with surfaces
Example: atom motion when 500 eV Au hits Cu





### **Bigger energies: massive surface damage**

For heavy ion bombardment and dense metals, a single incoming ion may lead to really dramatic surface effects





### Surface damage: cratering

The typical end result is a crater

The craters we get in simulations can be directly compared to experiments by predicting the transmission electron microscopy (TEM) image of it

#### MD simulation result





#### Predicted TEM image Experimental TEM image



[Donnelly, Physical Review B 85 (1997) 4968]

Flyura Djurabekova, Accelerator Laboratory, University of Helsinki



A quantitative comparison shows the crater sizes we get agree well with the experimental ones



[Bringa et al, Phys. Rev. B 64 (2001) 235426]



## **Relevance to CLIC component damage?**

- Any stray heavy particles in the CLIC accelerating cavities could *in principle* be ionized at the surface, accelerated in the plasma or over the electric field, and cause surface damage like that shown in the animations
  - Some of the surface damage
    - we get, resembles that in
    - **CLIC** components
  - But the scale is nm rather than microns





Flyura Djurabekova, Accelerator Laboratory, University of Helsinki

[Walter Wünsch, CERN]



# Plans for simulating CLIC damage: spontaneous roughening?

- To study the onset of rf breakdown in CLIC, we consider is electric-field induced spontaneous surface roughening
- It is known that at least at high temperatures, metal tips can spontaneously sharpen when a high electric field is applied On them [Bettler, Phys. Rev. 119 (1960) 85]



Could this also occur at low temperatures in the CLIC conditions? Could explain the onset of roughening?



## Hybrid atomistic – electrodynamic simulation model

- We plan to simulate the issue using an approach similar to that developed at Argonne Natl. Lab. [Z. Insepov] to simulate cluster emission from a tip
- Sketch of planned algorithm:
  - 1. Simulate one ordinary molecular dynamics time step => gives equilibrium forces between atoms  $F_{equi}$
  - 2. Obtain radius of curvature of every atom
  - 3. Obtain total charge in simulation cell from external electric field E(t) and hence charges on surface atoms  $q_i$
  - 4. Calculate electrostatic forces between charges  $F_{q}$
  - 5. Get image forces from charges to metal surface  $F_{if}$
  - 6. Add up total force  $F_{tot} = F_{equi} + F_q + F_{if}$



## **Spontaneous tip smoothening?**

- On the other hand, when no electric field is applied, we know that nanosize Cu tips dullen and flatten out spontaneously due to surface diffusion [Frantz, J. Phys. Cond. Matter 16 (2004) 2995]
  - Could this explain why they have not been seen?
  - We can extrapolate our results of small clusters to bigger ones to estimate what size features would vanish





- The implementation of the hybrid MD-electrodynamic model will begin in Jan 2008
  - Challenging:
    - Electrostatics terms not part of usual MD
    - Stability of MD algorithms under external forces not well known, special temperature control algorithms may be needed
    - ED equations for image charges gives a divergence at z=0 that must be controlled
- Aim to be able to run test simulations in spring 2008, production runs in mid and late 2008.