Outline

- Motivation
- •The role of MME-CCS
- •DB and MB transfer lines
- Main beam
- Main beam quadrupoles
- Other issues
- conclusions

Motivation

Changes in the vacuum requirements for CLIC:

In 2006: "dynamic vacuum should be 1x10⁻⁸ mbar, static vacuum 1-5x10⁻⁹ mbar "
https://clic-meeting.web.cern.ch/clic-meeting/2006

In 2007: "whispers" of about 1x10⁻¹⁰ mbar for the main beam (MB) near the intersection point and for the transfer lines (MB and DB).

For the MB: high luminosity => high electrical field => ionization of the residual gas by tunnel effect => ion induced desorption (IID) => instabilities.

For the transfer lines: high current => ionization of the residual gas by collision => ion induced desorption => instabilities.

Not yet fully studied. Need confirmation from simulations. Anyway, "always better than 10⁻⁸ for the main beam..."

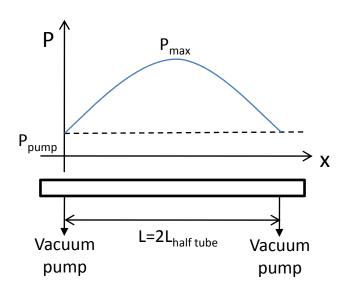
The role of MME-CCS

CCS has expertise in surface analysis, surface treatments and thin film coatings for UHV applications.

induced desorption, (by photons, electrons, ions), is a surface phenomena.

This expertise can be (and has already being) used to find solutions for surface's related problems.

DB and MB transfer line


Total length: 2x 21km

2% filled with 1m long magnets: 2x 420 magnets

Diameter of the beam pipe ϕ =40mm

Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)

Pressure profile in a tube with uniform distributed outgassing

$$P_{ ext{max}} = q \cdot 2\pi \cdot R \left(\frac{L_{halftube}}{S} + \frac{L_{halftube}}{2C_{halftube}} \right)$$

q -> outgassing rate

R -> radius of the tube

L_{half tube} -> length of half tube

S -> pumping speed

C -> conductance of half tube

DB and MB transfer line

Total length: 2x 21km

2% filled with 1m long magnets: 2x 420 magnets

Diameter of the beam pipe ϕ =40mm

Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)

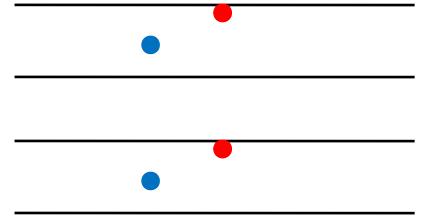
Static vacuum

		[Torr.l.s ⁻¹ ·cm ⁻²]	S [l.s ⁻¹]	L 		
No bakeout: main gas	H ₂ O	1.4.10 12	40		2,3	
With bakeout: main gas	H ₂	5.10 ⁻¹³	46	5.0	6.8	Possible solution
With bakeout:	СО	5.10 ⁻¹⁴	36	9.6	14	
With NEG: not pumped	CH ₄	10 ⁻¹⁷	28	814	1220	Better solution
With NEG: not pumped	Kr	2.10 ⁻¹⁸	6	1202	1802	Detter solution
-						

DB and MB transfer line

Total length: 2x 21km

2% filled with 1m long magnets: 2x 420 magnets


Diameter of the beam pipe ϕ =40mm

Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)

Why NEG coating solution better than bakeout?

Without NEG, desorbed molecules will follow random walk movement until being pumped by localized pumps (extremities of the beam pipe)

With NEG, the pumping power is right there! pressure recovering time is much shorter.

DB and MB transfer lines seams feasible with actual technology.

Main Beam

Bakeout excluded: tight mechanical tolerances.

Pumping speed in the accelerating structures is limited

If 10⁻¹⁰ torr are necessary... this is a feasibility issue for CLIC!

Dynamics of the H₂O pumping in limited conductance systems must be better understood

•An experimental set-up is being implemented to study H₂0 pumping dynamics

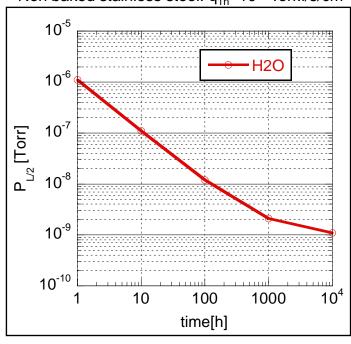
Best possible dynamic vacuum must be simulated

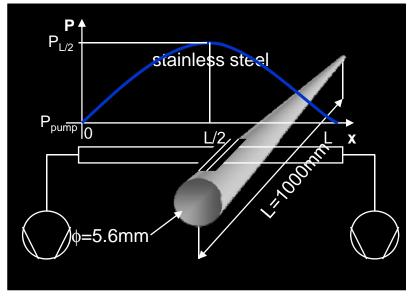
- Pumping speed and geometry
- •Thermal desorption/adsorption rates
- •Surface coverage *vs* time
- •Ion desorption yields

- •lonization efficiency per train
- •Ion bombardment of the walls
- Breakdown rate
- Gas released per breakdown
- •.....

We propose monte carlo and electrical network analogy approach

Main Beam quadrupoles


length: ~1-2m


Diameter of the beam pipe ~5-6mm

Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)

Bakeout excluded: temperature of the magnets < 80°C

$$q(h) = q_{limit} + q_{1h} \; . \; t^{-1}$$
 Non baked stainless steel: $q_{1h} = 10^{-9} \; Torr.l/s/cm^2$

What about q_{limit} ?

Depends on H₂O desorption-adsorption dynamics

Effects of beam conditioning?...

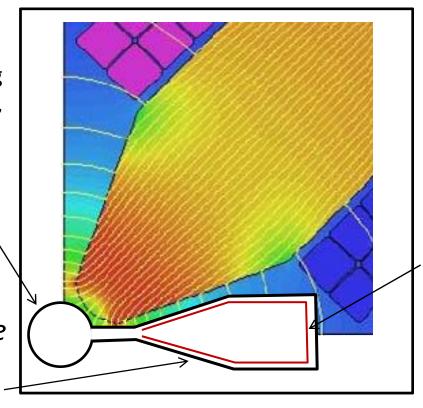
Main Beam quadrupoles

length: ~1-2m

Diameter of the beam pipe ~5-6mm

Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)

Distributed pumping is required


With actual technology:

Antechamber with active pumping elements (NEG coating or strip, sublimation pump)

Beam pipe

Probably not a feasibility issue

Antechamber

Pumping: NEG , Sublimation pump

Main Beam quadrupoles

length: ~1-2m

Diameter of the beam pipe ~5-6mm

Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)

Distributed pumping is required

And If we find a lower activation temperature NEG? The NEG film will be applied directly in the beam pipe.

Beam pipe

NEG thin film

Other issues

Combining rings

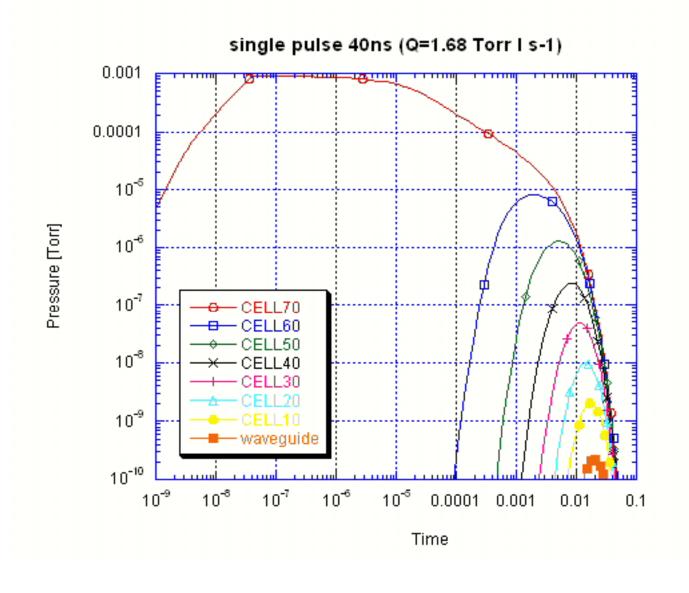
- •High levels of synchrotron radiation => high photon induced desorption
- Requires high distributed pumping speed
- •NEG coatings are widely used in electron storage rings for synchrotron light sources. (ESRF, Elettra...)
- •More details are necessary to evaluate situation.

not a feasibility issue

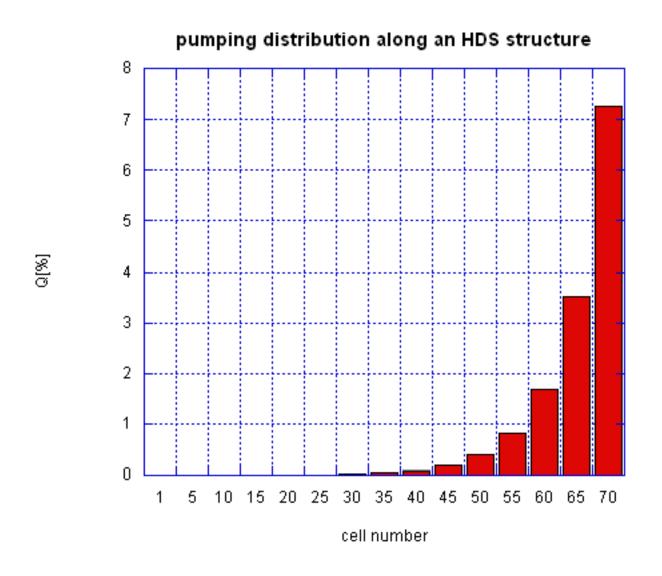
injection lines

- •VERY low secondary electron yield (SEY) required (0.9... maybe...)
- •CCS is launching a program to develop new materials with low SEY. Nitrides, carbides and borides of transition metals, C:N and other carbon based materials will be studied.

feasibility issue


Conclusions

- •MB and DB transfer lines: 10⁻¹⁰torr feasible with bakout or NEG. (NEG better for dynamic vacuum). *Not a feasibility issue*.
- •Main beam: 10^{-10} torr not possible without heating the structures. Best possible dynamic vacuum must be simulated. H₂O behavior must be studied. *feasibility issue*.
- •Main beam quadrupoles: distributed pumping required. **Probably not a feasibility issue**.
- •Combining rings: classical NEG solution. Input is necessary to correctly evaluate the situation. *Not a feasibility issue*.
- •injection lines: maybe a SEY of 0.9 is required. *feasibility issue*.


acknowledgments

Bernard Jeanneret and Daniel Schulte.

CO pressure evolution in an 30GHz HDS structure

Pumping distribution in 30GHz HDS structure

Introduction

Brief overview of the outgassing in UHV systems

Thermal outgassing:

Driving force: thermal energy.

baked systems: mainly H₂

But also CO, CO₂, CH₄ ...

Non baked systems: mainly
$$H_2O$$
 $q(t) \approx q_{\lim t} + \frac{10^{-9}}{t[hours]}[Torr \cdot l \cdot s^{-1} \cdot cm^{-2}]$

$$5 \cdot 10^{-14} < q < 10^{-11} [Torr \cdot l \cdot s^{-1} \cdot cm^{-2}]$$

Outgassing rates

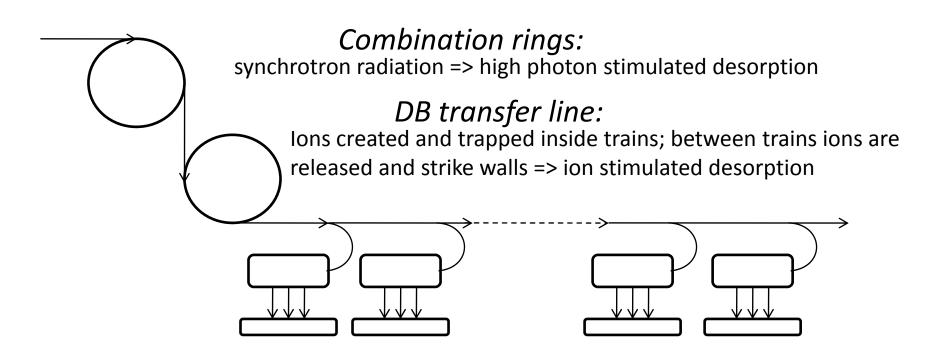
Stimulated outgassing:

Introduction

Brief overview of the outgassing in UHV systems

Thermal outgassing: Driving force: thermal energy.

Non baked systems: mainly H₂O


baked systems: mainly H₂, but also CO, CO₂, CH₄ at lower rates

Stimulated outgassing: Driving force: particles striking the surfaces of the system (photons, electrons, ions)

Strongly dependent

baked systems: mainly H₂, but also CO, CO₂, CH₄ at lower rates

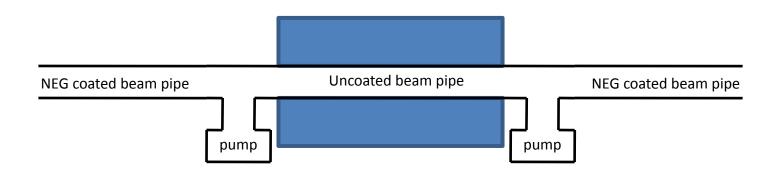
Introduction

MB transfer line: Roughly the same as DB transfer line

Main beam: Near the interaction point beam's electrical field is enough to ionize residual gas => ion stimulated desorption

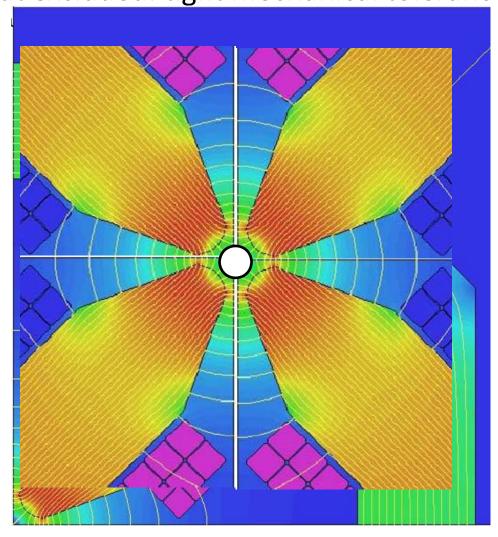
DB and MB transfer line

Total length: 2x 21km


2% filled with 1m long magnets: 2x 420 magnets

Diameter of the beam pipe ϕ =40mm

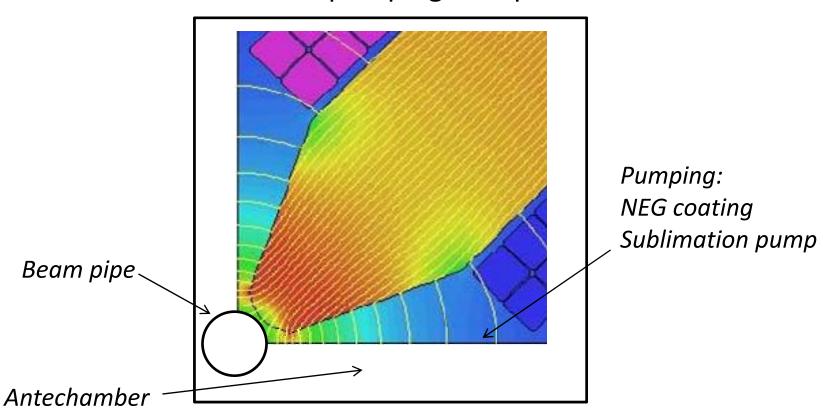
Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)


And for the magnets?

- •if T_{max}=200C ok for existing NEG
- •If not, *hybrid* solution!

Main Beam quadrupoles

Bakeout excluded: tight mechanical tolerances.


Main Beam quadrupoles

length: ~1-2m

Diameter of the beam pipe ~5-6mm

Limit pressure to avoid ion stimulated desorption: 10⁻¹⁰ Torr ("large" molecules)

Distributed pumping is required

