
HEADTAIL + MAD-X

N.Biancacci

Acknowledgement: B.Salvant, E.Métral, N.Mounet, D.Quatraro, G.Rumolo.

BPM

Outline

2

PART I:

• Present versions for HEADTAIL,

• HDTL+MADX: the general approach,

• Wakefield management,

• Lattice management,

• HEADTAIL,

• Output management.

PART II: Application to the damping ring of CLIC (E. Koukovini Platia).

Single kick Multi bunch

Multi turn (Nicolas ver.)

Multi kick Single bunch

(Diego’s ver., see Diego’s

PhD thesis)

Multi kick Multi bunch

Multi turn

All the impedances are lumped in the

same point. The beam is tracked with

a One Turn Map and each turn the

interaction with the global

impedance Z is calculated.

Possibility of multiple bunches.

The beam is tracked along the MAD-

X lattice creating matrices M1, M2..

Mi between the points where the Zi

interaction is calculated.

Same philosophy as Diego’s ver. but

very different implementation of the

lattice to/from MAD-X. Possibility

of multi bunches as implemented by

Nicolas.

Z2

Z1

OTM

M2

M1

Z2

Z1

M2

M1

Present versions of HEADTAIL

3

Z

General approach

The idea is to give a “backbone” to HEADTAIL developing a MADX interface in order to:

1. Make easy the extension of our studies to other machines (SPS, PS, CLIC, LEIR,

damping ring (DR), etc…).

2. Make easy lumping or distributing impedances for different lattices.

3. Decrease the “entropy” keeping the code modular.

4. Improve the usability from a user point of view.

The idea…

What came out…

4

General approach

5

.info

.w
ak

e

.w
ak

e

.w
ak

e

.reso

.w
ak

e

.w
ak

e

.w
ak

e

.w
ak

e

.reso

Wakefield manager

Lattice manager

Z2
Z1

.info .info .info

Wakefield repository

Z3

PS

SPS

DR

L
a
ttic

e rep
o
sito

ry

HEADTAIL

O
U

T
P

U
T

LEIR

Wakefield management

6

.info

.w
ak

e

.w
ak

e

.w
ak

e

.reso

.w
ak

e

.w
ak

e

.w
ak

e

.w
ak

e

.reso

Wakefield manager

Lattice manager

Z2
Z1

.info .info .info

Wakefield repository

Z3

PS

SPS

DR

L
a
ttic

e rep
o
sito

ry

HEADTAIL

O
U

T
P

U
T

LEIR

7

• The wakefields are collected in a specific folder named “HDTL_wakes” (see later) as raw

data. For the moment two kind of impedances are present:

1. Resonator impedances: specified in a “.reso” file.

2. Wake tables: specified as a “.wake” file. Here the impedance is tabulated in columns

accordingly to Nicolas convention (see later) .

.info

.w
ak

e

.w
ak

e

.w
ak

e

.reso

.w
ak

e

.w
ak

e

.w
ak

e

.w
ak

e

.reso

Wakefield manager .info .info .info

Wakefield repository

Wakefield management

Res_frequency_of_broad_band_resonator_[GHz]: 5.0

Transverse_quality_factor: 1.

Transverse_shunt_impedance_[MOhm/m]: 20

Res_frequency_of_longitudinal_resonator_[MHz]: 200.

Longitudinal_quality_factor: 140.

Longitudinal_shunt_impedance_[MOhm]: 0.0

.reso .wake

Time (ns) Wxdip Wydip Wxquad Wyquad

8

• In order to be able to run simulations with different impedances, of whatever nature, in

whatever location, a “Wakefield manager” will read a “.info” file that contains information

about the impedance we want to place in the lattice and simulate.

.info

.w
ak

e

.w
ak

e

.w
ak

e

.reso

.w
ak

e

.w
ak

e

.w
ak

e

.w
ak

e

.reso

Wakefield manager .info .info .info

Wakefield repository

Wakefield management

.info to manage a resonator .info to manage a wake table

NAME: BB_SPS

POSITION: 100

INTERACTION: IMPEDANCE

TYPE: 0

SCALE: 0

BETX: -

BETY: -

MULTIPLY: 0

MULTIPLY_COEFF: 1

NAME: MKE.61637

POSITION: 6281.80

INTERACTION: IMPEDANCE

TYPE: 1

TABLE_TYPE: 4

SCALE: 0

BETX: -

BETY: -

MULTIPLY: 0

MULTIPLY_COEFF: 1

NB: the name of the “.info” file is the

name of the element present or installed in

the MADX lattice. The name in the

“.info” file is the one pointing to the

“.wake” one. For example we have an

element RFCAVITY in the lattice, then

we have a RFCAVITY.info file that

points to rf200Mhz.wake

(NAME=rf200MHz)

9

• In order to be able to run simulations with different impedances, of whatever nature, in

whatever location, a “Wakefield manager” will read a “.info” file that contains information

about the impedance we want to place in the lattice and simulate.

Wakefield management

.info to manage a resonator .info to manage a wake table

NAME: BB_SPS

POSITION: 100

INTERACTION: IMPEDANCE

TYPE: 0

SCALE: 0

BETX: -

BETY: -

MULTIPLY: 0

MULTIPLY_COEFF: 1

NAME: MKE.61637

POSITION: 6281.80

INTERACTION: IMPEDANCE

TYPE: 1

TABLE_TYPE: 4

SCALE: 0

BETX: -

BETY: -

MULTIPLY: 0

MULTIPLY_COEFF: 1

NAME
specify the “.reso” or “.wake” file you want to point to. This will be then plugged in the lattice. It is possible to have different “.info” file

pointing on the same wakefield.

POSITION specify the position in which the impedance will be inserted in the lattice if not already present (see later).

INTERACTION specify the kind of interaction to be done by HEADTAIL. In future could be a ecloud or space charge interaction…

TYPE

if 0 the name will be referred to a “.reso” file, if 1 to a “.wake” file. It is the “i_pipe” flag in the other version. The other impedances, case-

switched in the past versions, can still be simulated accordingly to their old “i_pipe” flag. NB: The case 1 corresponds to case 8 of Nicolas’s

version.

TABLE TYPE Only for wake tables (“.wake”). Specify the wakes you are going to simulate (see next slide).

SCALE
if 1 enable scaling of transverse wake fields (only dipolar and quadrupolar ones) in order to match the target beta function BETX and

BETY(see later for more about this). If 0 the wake will be applied accordingly to the beta functions at the place the kick is given.

BETX, BETY Horizontal and vertical target beta function;

MULTIPLY
if 1 enable scaling of transverse wake fields of a factor given by MULTIPLY_COEFF. Useful if you want to split the same impedance along

different position in the ring.

10

Wake table are taken accordingly to the convention that the most general wakefield is made by

dipolar, quadrupolar, coupled, constant and longitudinal components. When reading a wake

table (TYPE=1) the user have to specify with TABLE_TYPE the wakes that are contained in

the corresponding “.wake” file.

Wakefield management

TABLE_TYPE Columns in “.wake” file

1 T[ns], Wlong[V/pC].

2 T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)].

3 T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)], Wlong[V/pC].

4 T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)], Wxquad [V/(mm.pC)], Wyquad [V/(mm.pC)].

5 T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)], Wxquad [V/(mm.pC)], Wyquad [V/(mm.pC)], Wlong[V/pC].

6
T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)], Wxquad [V/(mm.pC)], Wyquad [V/(mm.pC)], Wxydip[V/(mm.pC)],

Wxyquad[V/(mm.pC)].

7

T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)], Wxquad [V/(mm.pC)], Wyquad [V/(mm.pC)], Wxydip[V/(mm.pC)],

Wxyquad[V/(mm.pC)], Wlong[V/pC].

8

T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)], Wxquad [V/(mm.pC)], Wyquad [V/(mm.pC)], Wxydip[V/(mm.pC)],

Wxyquad[V/(mm.pC)], Wxconst[V/pC], Wyconst[V/pC].

9

T[ns], Wxdip [V/(mm.pC)], Wydip [V/(mm.pC)], Wxquad [V/(mm.pC)], Wyquad [V/(mm.pC)], Wxydip[V/(mm.pC)],

Wxyquad[V/(mm.pC)], Wxconst[V/pC], Wyconst[V/pC], Wlong[V/pC].

WAKE TABLE

Lattice management

11

.info

.w
ak

e

.w
ak

e

.w
ak

e

.reso

.w
ak

e

.w
ak

e

.w
ak

e

.w
ak

e

.reso

Wakefield manager

Lattice manager

Z2
Z1

.info .info .info

Wakefield repository

Z3

PS

SPS

DR

L
a
ttic

e rep
o
sito

ry

HEADTAIL

O
U

T
P

U
T

LEIR

12

HEADTAIL is now interfaced with MAD-X lattices. These are kept inside a specific folder

with the name of the machine. The machines present until now are:

• SPS

• PS*

• DR (CLIC damping ring)**

• LEIR***

Lattice repository

.info

Lattice manager

Z2
Z1

.info .info .info

Z3

PS

SPS

DR

L
a
ttic

e rep
o
sito

ry

LEIR

Thanks to: (*) C.Hernalsteens, (**) F.Antoniou, (***) O.Berrig.

13

HEADTAIL is now interfaced with MAD-X lattices. These are kept inside a specific folder

with the name of the machine. The machines present until now are:

• SPS

• PS

• DR (CLIC damping ring)

• LEIR

It looks something like this…

Lattice repository

MADX module to match the tune

specified in HDTL configuration.
MADX executable

MADX output

MADX module to get the Twiss parameters for

all the lattice elements and get the general

information of the lattice for HDTL.

MADX module to insert specified

element (impedances) in the lattice.

SUSSIX code for FFT post-processing.
Wakefield repository.

MADX module to

get the Twiss

parameters for

selected elements.

14

Once a machine is specified, HEADTAIL will do the following operations:

1. Read the “.info” files specified in the configuration file.

2. Place the impedances along the lattice and, if the case, install new element in the lattice.

3. Make a struct of each element to handle easily the twiss parameters.

4. Construct the transport matrices from one element to the other.

5. If the impedances have to be lumped at one point construct and use the One Turn Map.

Lattice manager

.info

Lattice manager

Z2
Z1

.info .info .info

Z3

PS

SPS

DR

L
a
ttic

e rep
o
sito

ry

LEIR

15

Lattice manager - elements

Until now three type of elements are present:

• START: always present, is the starting point of the machine (note that the twiss alfa parameter can be

different from zero here).

• H/VMONITOR: correspond to BPMs specified in the MADX lattice.

• IMPEDANCE: correspond to a wakefield interaction point.

Every element in the lattice is treated as a structure-object. It creates a structure in HEADTAIL with all its optic

functions.

keyword="MARKER"

name="SPS$START"

s=0.000000e+00

mux=0.000000e+00

muy=0.000000e+00

betx=1.034789e+02

bety=2.089947e+01

alfx=-2.316795e+00

alfy=5.375344e-01

Dx*=1.231801e+00

Dy*=0.000000e+00

keyword="VMONITOR"

name="BPV.10108"

s=3.176520e+01

mux=1.094653e-01

muy=1.307504e-01

betx=2.121867e+01

bety=1.020872e+02

alfx=5.522338e-01

alfy=-2.295629e+00

Dx*=9.463603e-01

Dy*=0.000000e+00

keyword="IMPEDANCE"

name="MKE.41631"

s=3.972341e+03

mux=1.500822e+01

muy=1.506461e+01

betx=9.637988e+01

bety=2.270612e+01

alfx=2.218481e+00

alfy=-6.313039e-01

Dx*=-1.573395e-01

Dy*=0.000000e+00

Moreover, elements contain pointers to FILE that are going to be written or read.

• START struct contains a pointer to the “prt.dat” file for back compatibility.

• H/VMONITOR structs contain pointers to their own output file (see later).

• IMPEDANCE structs contain pointers to their own input wake field and output “.track” file (see later).

NB: the dispersion is corrected by a factor (relativistic) in HEADTAIL. This is because in MADX the dispersion is referred to a

momentum spread given by 𝛿𝑀𝐴𝐷 =
∆𝐸

𝑝0𝑐
= 𝛽
∆𝑝

𝑝0
= 𝛽𝛿𝐻𝐸𝐴𝐷𝑇𝐴𝐼𝐿

Lattice manager - transport matrices

Once the lattice is created, each element has a 4-D transport matrix associated

from its point to the following one.

---------------------------- Matrix of elements --------------------

M("SPS$START"->"BPV.10108)

-3.16e-01 2.97e+01 | 0.00e+00 0.00e+00

-4.35e-02 9.32e-01 | 0.00e+00 0.00e+00

--

0.00e+00 0.00e+00 | 2.38e+00 3.38e+01

0.00e+00 0.00e+00 | 4.55e-02 1.07e+00

 M("BPV.10108->"BPH.10208)

2.38e+00 3.44e+01 | 0.00e+00 0.00e+00

4.56e-02 1.08e+00 | 0.00e+00 0.00e+00

--

0.00e+00 0.00e+00 | -3.17e-01 2.97e+01

0.00e+00 0.00e+00 | -4.35e-02 9.21e-01

16

 --------------OTM-----------

-1.00e+00 7.54e+01 | 0.00e+00 0.00e+00

-4.49e-02 2.37e+00 | 0.00e+00 0.00e+00

--

0.00e+00 0.00e+00 | 9.12e-01 1.89e+01

0.00e+00 0.00e+00 | -5.58e-02 -6.06e-02

Then the One Turn Map (OTM) is calculated.

Note: Synchrotron motion, chromaticity and also octupole detuning are treated as a rotation at the end of

each turn.

Lattice manager – beta functions

We simulate impedances one by one, the tune shift will be:

17

∆𝑄 ∝ 𝑊𝑘𝛽𝑘
𝑁

𝑘

Z1

Z2

Z3

We lump all the impedances in a X point. In order to have the same effect we have to scale the wakes as:

Z1

Z2

Z3

X

∆𝑄 ∝ 𝑊𝑘𝛽𝑘 =
𝑁

𝑘
𝛽𝑋 𝑊𝑘

𝛽𝑘
𝛽𝑋

𝑁

𝑘
= 𝛽𝑋𝑊𝑋

𝑊𝑋

To simulate wakefield interactions, 3 approaches can be chosen accordingly to the situation.

(A)

(B)

In some case the impedance is smoothly distributed in long sections where the beta functions vary periodically

(for example a resistive wall). We can still lump the impedance in some point X accordingly to:

X

∆𝑄 ∝ 𝑊𝛽 𝑠 𝑑𝑠 =
𝐿

0

𝑊𝐿𝛽 = 𝛽𝑋
𝛽

𝛽𝑋
𝑊𝐿

𝑊𝑋

(C)

Lattice manager – beta functions

18

In some case the impedance is smoothly distributed in long sections where the beta functions vary periodically

(for example a resistive wall). We can still lump the impedance in some point X accordingly to:

X

∆𝑄 ∝ 𝑊𝛽 𝑠 𝑑𝑠 =
𝐿

0

𝑊𝐿𝛽 = 𝛽𝑋
𝛽

𝛽𝑋
𝑊𝐿

𝑊𝑋

(C)

• With this approach we can simulate a distributed element lumping it somewhere, not necessarily at the

starting point of the lattice as before.

• The 𝛽 parameter has to be set in the “.info” file. For example:

.info to manage a wake table

NAME: ARC

POSITION: 250

INTERACTION: IMPEDANCE

TYPE: 1

TABLE_TYPE: 4

SCALE: 1

BETX: 𝛽 x

BETY: 𝛽 y

MULTIPLY: 0

MULTIPLY_COEFF: 1

Means:

“Put the ARC impedance at 250m in the

lattice. The beta functions seen by the beam

are 𝛽 x and 𝛽 y”

• NB: The 𝛽 is usually not given by R/Q as in the smooth approximation.

Lattice manager – beta functions

19

• NB: The 𝛽 is usually not given by R/Q as in the smooth approximation.

F F D

• In weak focusing machine (where 0<n<1 with n=𝜌2𝐾 with

𝜌 bending radius and 𝐾 quadrupolar strength), the average

beta function could be taken as 𝛽 = 𝑅/𝑄 with a good

approximation (<1%) since the phase advance per cell

was very small (few degrees).

• In a strong focusing machine (n>1e3) this is no more valid.

For the FoDo cell we can calculate:

𝛽 = 𝐿𝑐𝑒𝑙𝑙
1

sin (𝜇)
−
1

6
tan
𝜇

2

with 𝜇 in radiants. In SPS for Q26 from 𝛽 =41m of the smooth

approximation, we get 𝛽 =52m, i.e. 25% more.

If we use a OTM with 𝛽𝑥 =
R

Q
= 41𝑚, the resistive wall impedance of the whole machine will be lumped at

the starting point weighted by the ratio
𝛽

𝑅/𝑄
=
52

41
.

∆𝑄 ∝ 𝑊𝛽 𝑠 𝑑𝑠 =
𝐿

0

𝑊𝐶𝛽 =
R

Q

𝛽

𝑅/𝑄
𝑊𝐿

NB

HEADTAIL

20

.info

.w
ak

e

.w
ak

e

.w
ak

e

.reso

.w
ak

e

.w
ak

e

.w
ak

e

.w
ak

e

.reso

Wakefield manager

Lattice manager

Z2
Z1

.info .info .info

Wakefield repository

Z3

PS

SPS

DR

L
a
ttic

e rep
o
sito

ry

HEADTAIL

O
U

T
P

U
T

LEIR

HEADTAIL - Configuration file

Here the new part of the “.cfg” file.

Note: All the indirect information about the machine have been removed like:

• Circumference (taken from MADX).

• Momentum compaction factor (taken from MADX).

• Average beta X and Y (calculated from MADX).

• Average beam pipe width and height (if present, taken from MADX).

If no observation points are specified then the observation will be at START. 21

Flag_for_bunch_particles_(1->protons_2->positrons_3&4->ions): 1

Number_of_particles_per_bunch: 1e11

Machine: SPS

Observation_points: BPH+BPV

Interaction_points: MKE+MKP+MKQ+MKD

Install_impedance: REWALL+RFCAVITY+VAC*

Lump_impedance_(1->Yes,0->No): 0

Bunch_length_(rms_value)_[m]: 0.2023

Normalized_horizontal_emittance_(rms_value)_[um]: 3.0

Normalized_vertical_emittance_(rms_value)_[um]: 3.0

[…..]

Specify the folder where your

machine can be found.

Specify the BPMS with their MADX pattern:

• “BPV.10010” (only this monito)

• “BPV*” (all monitor starting with BPV)

• “BPV+BPH” (all hor. and vert. monitors)

• “NONE” (nothing)

Specify the impedance that are already present

in the MADX file with their MADX name :

• “MKPA.11931” (only this impedance)

• “MKP*” (all MKP)

• “MK*” (all impedance starting with MK)

• “NONE” (nothing)

• The name should match the corresponding

“.info” file (i.e. “MKE.11631.info”, etc..)

Specify the impedance that are not present in the MADX file

and that will be installed:

• The name should match the “.info” file (i.e. REWALL.info,

RFCAVITY.info)

• The info file will contain the type of impedance and the place

you want to install it.

• NB: you could choose an already “occupied” position. In this

case MADX will automatically shift your element to find a

free space

• “NONE” (nothing)

Put to “1” if you want to lump all the lattice at start.

NB: This will work only if all the wakes are tables

(“.wake”), of the same type, and have the same length.

HEADTAIL - Particles ensemble generation

Some modification had to be done in the particle generation. Since START can be a skew

point in the lattice:

1. We calculate the a and b axes of the skew phase space ellipse;

2. We generate the particle ensamble with the Box-Muller transformation to have a

gaussian distribution with the specified emittance.

3. We tilt the distribution following the angle obtained using the twiss parameters.

a
b

22

HEADTAIL – MAIN LOOPS

.

23

it=1:N_turn

el=0:N_el

Distribute bunches

Building lattice

Initialize bunches distribution

Open files

bunch=1:N_bunch

binning

Write “.prt”

Write BPM

if el=0

if el=BPM

if el=IMPEDANCE

slice=1:N_slice

i=1:Nparticles

Compute kick

Apply kick

Transverse motion

Synchrotron motion

Chromatic+octupole rotation

Close files

Add Dx

Sub Dx

Output

24

.info

.w
ak

e

.w
ak

e

.w
ak

e

.reso

.w
ak

e

.w
ak

e

.w
ak

e

.w
ak

e

.reso

Wakefield manager

Lattice manager

Z2
Z1

.info .info .info

Wakefield repository

Z3

PS

SPS

DR

L
a
ttic

e rep
o
sito

ry

HEADTAIL

O
U

T
P

U
T

LEIR

Output

HDTL_average_lattice.dat: MADX twiss file for the complete machine you simulated.

HDTL_selected_lattice.dat: MADX file for the elements were selected for the tracking.

Prb.dat: Takes a snapshot of the phase space (id, x,x’,y,y’,z,z’) at the turns selected in the config file. 100 particles

are taken randomly along the first bunch.

Pini.dat: Takes a snapshot of the initialized phase space (x,x’,y,y’,z,z’), 1000 particles are taken randomly.

Bunchds.dat: Takes a snapshot (s[m], Npr(s))of the longitudinal distribution for the first bunch after all the

interaction in the turn have been made at the turns selected in the “.cfg” file. The bunch extends from -5 to +5

(Verteil function).

Prt.dat: General tracking information files. In this version will refer to the START point in the lattice. The columns

are:

1) Time_step: sampled time in which the beam

passes at START.

2) <X>: average centroid X [m].

3) <Xp>: average centroid X’ [rad].

4) <Y>: average centroid Y [m].

5) <Yp>: average centroid Y’ [rad].

6) <Z>: average centroid Z [m].

7) <dp/p>: average centroid dp/p [adim].

8) <x>: average horizontal beam size* [m].

9) <y>: average vertical beam size* [m].

10) <z>: average longitudinal beam extension [m].

11) <dp/p>: average beam momentum spread [adim].

12) xn: beam normalized horizontal emittance [mm mrad]**.

13) yn: beam normalized vertical emittance [mm mrad]**.

14) l: beam longitudinal emittance [eV s]**.

15) Jx: Horizontal action variable [m]***.

16) Jy: Vertical action variable [m].

17) l=4(tE) beam longitudinal emittance [eV s]****.

18) yz : Y-Z correlation.
19) Effective number of particles (N_tot-N_lost)/N_tot.

25

All the informations/results are collected in a specific folder named “Output_#NAME_CFG_FILE”.

For example, running test.cfg, all the results will be in Output_test.cfg.

*since START can have alfa xy different from zero, these sigma

are still not correct since where referred to a flat ellipse.

** calculated as 휀 = 𝑥2 𝑥′2 − 𝑥𝑥′ 2 for a centred beam.

*** 𝐽𝑥 =
1

2𝛽
𝑥2 + 𝛽𝑥′ + 𝛼𝑥 2 .

**** This is an approx. for a beam whose dimension in longitudinal phase space

are smaller in comparison to the bucket dimension.

Output

#Name_imp.track: File containing the wake used in the simulated interactions.

• For a broad band impedance is made of 3 columns:

 (s[ns], Wtrasv(V/mm pC), Wlong(V/pC)),

• For a table impedance is made of coloumns (s[ns], Wxdip(V/mm pC), Wydip(V/mm pC):

 Wxquad(V/mm pC), Wyquad(V/mm pC), Wxydip(V/mm pC), Wxyquad(V/mm pC), Wxconst(V/pC),

 Wyconst(V/ pC), Wlong(V/pC)),

Beware: there’s a sign change in x and y coordinates since HEADTAIL uses this different convention.

Sample.dat: Net bunch energy loss per turn in case of longitudinal impedance. (turn number, dp_turn [MeV], bunch_id).

Hdtl.dat: Headtail monitor emulator. It contains a table with these columns:

1) Spatial distribution [ns] from -N to N shifted of N (ie.

From 0 to 2N) .

2) Nprslice * <Xslice>: Number of particle per slice times its

displacement in X.

3) Nprslice * <Yslice>: Number of particle per slice times its

displacement in Y.

4) Nprslice * < x slice>: Number of particle per slice times its rms

size in X.

5) Nprslice * < y slice>: Number of particle per slice times its rms

size in Y.

6) Nprslice :Number of particle per slice

7) d(Nprslice)/dz: Longitudinal derivative of the distribution per

slice.

8) Bunch_id number.

26

Inph.dat: Collects informations about the longitudinal matching number, total number of macroparticles, bunch and slices used

in the simulation, the percent of beam loss and the pipe average apertures (rpipex, rpipey).

lumped.wake: if lumping is chosen, in this file will be printed the total wake weighted at START.

27

Observations on emittance growth

Horizontal plane Vertical plane

• While in the vertical plane we observe basically no emittance growth,

in the horizontal plane it grows of +1.3% in 20000 turns (all kickers

impedance, Nb=10^11ppb).

• The curves are shifted because of the initial distribution difference.

• The dispersion is added and then subtracted before the interaction.

Is the wake energy taken out from the beam?

Kickers as benchmark

As a first check, we compared with Nicolas version the tune shift induced by the distributed

and lumped kicker impedances calculated by Carlo. The lattice is a SPS-Q26 lattice.

28

Outlook

• The HEADTAIL code can now support different lattices, as well as lumped or distributed impedances. This version

can be found at: https://svnweb.cern.ch/cern/wsvn/hdtldev/branches/HDTLattice/

• The way it interfaces with MADX and build the element structs, allows easy insertions of other kind of elements

like ecloud, space charge kicks, etc…

• The wakefield management could to be further improved in order to be interfaced with Zbase.

• A list of benchmarks and work to do should be now defined and compared with the multi bunch single lattice

version:

1. Simulations of rise-times (Nicolò),

2. Simulations of tune shifts in transverse plane for DR (Eirini),

3. Simulations of potential well distortion for PS (Mauro),

4. Simulations with first and second order chromaticity,

5. Restore and simulate the multi-bunch part of the code (Nicol[as+ò]),

6. Simulations for impedance localization (Nicolò),

7. Including and testing the PSB and LHC lattice,

8. Including a layer in the wakefield management for interpolating the wakes.

9. Checking the octupole detuning (include real lattice elements since in SPS they are only 3)

10. Simulation for emittance growth w/o quadrupolar component, maybe following the evolution of a little

volume of phase space.

• If we’ll be interested in tracking simulations of non-linear elements and impedances, we should consider to

interface HEADTAIL with PTC.

• Create a Test-folder in the HDTLattice branch where people can collect all their benchmark configuration files and

results.

29

https://svnweb.cern.ch/cern/wsvn/hdtldev/branches/HDTLattice/
https://svnweb.cern.ch/cern/wsvn/hdtldev/branches/HDTLattice/

Many thanks!

30

Particular thanks to:

F.Antoniou (DR optics),

H.Bartosik (Optics),

O.Berrig (LEIR lattice),

C.Hernalsteens (PS lattice),

E. Koukovini Platia (DR studies),

K. Li (FFT processing),

M.Migliorati (Usability),

Y. Papaphilippou (DR optics),

S.Persichelli (Usability),

R. Tomás (Optics),

C.Zannini (SPS studies).

Lattice funtions (Lattice.h)

• All the function concerning lattice generation were gathered in a new header file

Lattice.h. This hands also the wake generation.

Function definitions for different kinds of wake fields

Average lattice Function to calculate the average parameter for selected lattice. Momentum

compaction factor, circumference, average beta X Y, average apertures.

Build Matrix Function that construct the transport matrix between two elements using

their twiss functions.

Print Matrix Print lattice matrixes

Prod Matrix Products between two matrices

Prod Vector Products matrix vector for transport.

One turn map Calculate OTM for crosscheck or ilump=1

Write madx Writes down the MADX file to get information about the observers and

impedances specified in the .cfg file.

Build wakes Associate wakes to specified impedances elements. Lumps at START is

ilump=1

Build Lattice Reads the madx output file and construct the lattice elements

DeltaQ_octuple Apply the rotation due to octupole detuning

DeltaQ_chromaticty Apply rotation due to chromaticity, first and second order.

31

Constants.h

Functions for bunch assembly and re-assembly

update_bvalues

binning sub-divides the bunch into thin slices interact one by one with the kicking wake.

Bunch.h

Variables.h

Main physics variables (pi, c,e,mu0, e0,mp,me,rp,re,I0,Z0)

All the global variables used in the code.

HEADERS in HEADTAIL

and their function

32

Function definitions for different kinds of wake fields

wake_func Function that gives the transverse wake function at a given location z < 0 (z is 'pos')

for a resonator

wake_reswall Function that gives the transverse wake function at a given location z < 0 (z is 'pos')

for a resistive wall (classic thick wall formula - see W. Chao's book"Physics of

Collective Beam Instabilities in High Energy Accelerators", p.71)

wake_reswall_ib Function that gives the transverse wake function at a given location z < 0 (z is 'pos')

for a resistive wall with inductive by-pass (see A. Koschik PhD, p.61)

Wake_funcz Function that gives the longitudinal wake function at a given location z < 0 (z is

'pos') - single bunch in cavity.

locate Function that gives the position lprov (integer) in table, such that table[lprov-

1]<z<table[lprov]

wake_table Function that gives the wake function at a given location z < 0 (z is 'pos'). Wake

coming from table

wake_pretreat Function that gives zout, a table of distances z such between 2 sucessive z in this

table, wake functions do not vary by more than "ratio" (in relative)

Fields.h

HEADERS in HEADTAIL

and their function

33

Function definitions for different kinds of wake fields

wake_func Function that gives the transverse wake function at a given location z < 0 (z is 'pos')

for a resonator

wake_reswall Function that gives the transverse wake function at a given location z < 0 (z is 'pos')

for a resistive wall (classic thick wall formula - see W. Chao's book"Physics of

Collective Beam Instabilities in High Energy Accelerators", p.71)

wake_reswall_ib Function that gives the transverse wake function at a given location z < 0 (z is 'pos')

for a resistive wall with inductive by-pass (see A. Koschik PhD, p.61)

Wake_funcz Function that gives the longitudinal wake function at a given location z < 0 (z is

'pos') - single bunch in cavity.

locate Function that gives the position lprov (integer) in table, such that table[lprov-

1]<z<table[lprov]

wake_table Function that gives the wake function at a given location z < 0 (z is 'pos'). Wake

coming from table

wake_pretreat Function that gives zout, a table of distances z such between 2 sucessive z in this

table, wake functions do not vary by more than "ratio" (in relative)

HEADERS in HEADTAIL

and their function

34

Helper functions

Reverse Reverse string

itoa Integer to string

File functions

open_files Open files for storing calculation data.

close_files Close output files.

read_data Define main parameters by reading data from specified configuration-file

Files.h

HEADERS in HEADTAIL

and their function

Function definitions used by the main program

momentum

Function that gives the momentum evolution during acceleration

gammarel Function that gives the relativistic gamma evolution during acceleration

betarel Function that gives the relativistic beta evolution during acceleration

rfpot single rf potential

randDistrVal random value from elliptical or gaussian distribution (phi, phiDot, ws0,

phiDotMax, phiS, distFlag)

etaslip Function that gives the slip factor eta evolution during acceleration

Initialisation.h

HEADERS in HEADTAIL

and their function

Functions for the generation of cloud and bunch distributions

verteil Vector containing the quantity whose distribution we want to plot, number of elements of

this vector

verteil2 Calculate arbitrary distribution

parabolic Parabolic particle and velocity distribution in longitudinal direction.

Functions for the initialisation of the simulation parameters and the

 cloud and bunch distributions

init_values Initialize all parameter values, necessary for calculation.

Initialization() Initialize particles positions and velocities

refresh_el Re-initialization of the electrons distribution after one full bunch passage

new_fraction Re-initialization of the fraction of electrons newly generated after one slice

gsl_qrng_sample Function for quasi-random sampling of bunch particles using a hammerslay sequence

HEADERS in HEADTAIL

and their function

37

