

ACTAR TPC: a new time projection chamber for radioactive beam experiments

D. Suzuki Institut de Physique Nucléaire d'Orsay On behalf of the ACTAR TPC collaboration

suzuki@ipno.in2p3.fr

10th RD51 Collaboration Meeting: October 4, 2012 Stony Brook, NY, USA

Outline

- Physics motivation
- Basic concept: "Active-target" TPC
- ACTAR TPC project scope
- Micromegas prototype test
- ACTAR TPC demonstrator

Physics motivation

• Structure/ reaction dynamics of unstable nuclei

Challenges of RI beam reactions

- Light ion (*p*, *d*, ^{3,4}He...) as hadronic probe
- RI beams (heavy) + target (light)
- "Asymmetric" collision
 - Swiftly moving CM frame
 - Low-energy probe ion in LAB frame
 - Energy loss in target deteriorates the resolution
- Idea of "Active-target" TPC
 - Track ions "inside" the target

acia

MAYA @GANIL

- Operational since 2003
 - Low beam energy (~ 3 MeV/u)
 - Low transferred energy

60 50 40 30	28 cm	Ancillary detectors
20 20 tis to 5 0 20 cm		
re Beam		Frisch grid Amplification wires Segmented cathode

Beam/Energy [MeV/u]	Date	Reaction	Gas	Mixture [%]	Pressure [mbar]
⁸ He @ 3.9	2003	⁸ He(p,p')	C_4H_{10}	100	1000
⁸ He @ 3.5	2003	⁸ He(p,d) ⁷ He	C_4H_{10}	100	525
^{25,26} F @ 50.0	2004	²⁵ F(d, ³ He) ²⁴ O	D_2	100	2200
⁵⁶ Ni @ 50.0	2005	⁵⁶ Ni(d,d')	D_2	100	1050
⁸ He @ 15.4	2005	⁸ He(¹² C, ¹³ N) ⁷ H	C_4H_{10}	100	30 TRIJME
¹¹ Li @ 3.6	2006	¹¹ Li(p,d) ¹⁰ Li	C_4H_{10}	100	150
		¹¹ Li(p,t) ⁹ Li	C_4H_{10}	100	664
⁶ He @ 3.5	2007	⁶ He(p,n) ⁶ Li	C_4H_{10}	100	107
⁶⁸ Ni @ 50.0	2010	⁶⁸ Ni(d,d')	D_2	100	1040
		⁶⁸ Ni(α,α')	$\mathrm{He} + \mathrm{CF}_4$	98/2	500
⁵⁶ Ni @ 50.0	2011	⁵⁶ Ni(a,a')	$\mathrm{He} + \mathrm{CF}_4$	98/2	1200
⁸ He @ 15.4	2011	⁸ He(¹⁹ F, ²⁰ Ne) ⁷ H	$\mathrm{He} + \mathrm{CF}_4$	10/90	175 ISOL DE
¹² Be @ 3.0	2012	¹² Be(p,p')	C_4H_{10}	100	100

C.E. Demonchy et al., Nucl. Instrum. and Meth. A 583 (2007) 341

http://pro.ganil-spiral2.eu/laboratory/detectors/maya

Beyond MAYA

- Precise particle identification of stopped particles
 - Discriminating (p, d, t) or $({}^{3}\text{He}, {}^{4}\text{He}, {}^{6}\text{He})$ is difficult with MAYA
 - Using energy deposit profile
 - MAYA is using wire technology with hexagonal pads ~ 1 cm
 - MPGD with smaller pixels 2 x 2 mm²

Next Generation: ACTAR TPC

- Specifications
 - Microgegas/ GEM (~ 650 cm², pad size 2 × 2 mm²)
 - 16,384 channel
 - GET (<u>General Electronics for TPC's</u>):
 - Wave-digitizer using 511 analogue memory cells
 @ 100 MHz max
 - Internal trigger/ zero suppression for reducing data traffic
 - ANR Funded Project (Nov. 2009 Oct. 2013)
 - IRFU/CEA-Saclay, CENBG, GANIL, MSU
 - Different physical geometries: Reaction and decay
- 2012 2013 Research and Development
 - Tests of prototype detector (Micromegas & GEM)
 - Building of demonstrator
 - Physics simulations (ACTARsim)
 - Chamber design (geometry, mechanics)
 - GET electronics development

7

Micromegas Prototype

- ϕ 5.6 cm, 2 × 2 mm² 576 channel prototypes
 - Design @ IPN Orsay
 - Bulk micromegas @ CEA Saclay (IRFU-SEDI)
 - Amplification gaps (128 and 256 µm)

Detector tests inside Maya @ GANIL

Enclosure

Field cage

T2K electronics

Silicon

- **Determine angular and energy resolution**
- Gases: C₄H₁₀, He:CF₄ 98:2, Ar:CF₄ 98:2
- Pressures: 25 1100 mbar
- ²³⁹Pu/ ²⁴¹Am/ ²⁴⁴Cm source
- **T2K electronics (511 analogue circular memory cells)**
 - T. Lux for the T2K TPC groups, J. Phys: Conf. Ser. 65 (2007) 012018

Horizontal Angular Resolution

Horizontal Angular Resolution

- How does resolution evolve with short traces?
 - Important for low-energy reaction and decay products
 - MAYA reconstruction not possible below ~ 5 cm

Vertical Angular Resolution

- Vertical angles determined from the calibrated drift times
 - Less sensitive to trace length (gas and pressure dependent)
 - Angular resolution < 1.2° (FWHM)

Energy (Range) Resolution

- Range of α's in Ar:CF₄ 98:2 @ 1100 mbar
 - Range resolution > 0.8 mm (FWHM)
 - Energy resolution > 80 keV (FWHM)

ACTAR TPC Demonstrator

Summary

- ACTAR-TPC, a new time projection chamber for radioactive beam experiments, is under development in France.
- A high-granularity Micromegas was tested with C₄H₁₀, He:CF₄, and Ar:CF₄
 - Angular resolution ~ 1° FWHM
 - Energy resolution ~ 80 keV FWHM
 - Met or exceeded collaboration requirements
- ACTAR TPC Demonstrator has been assembled
 - Test starts from October 2012
 - Test a complete GET system
 - Define the final detector design
 - Budget request for the full detector: Fall 2012

ACTAR TPC Collaboration

• CENBG

• B.Blank, J.Giovinazzo, J.L.Pedroza, J.Pibernat

• GANIL

• S.Damoy, G.F.Grinyer, J.Pancin, D.Perez-Loureiro, F.Saillant, B.Raine, T.Roger, G.Wittwer

• IPNO

*** SENBG**

 V.Chambert, E.Khan, A.Lermitage, G.Noël, J.Peyre, J.Pouthas, P.Rosier, D.Suzuki, M.Vandebrouck, L.Vatrinet, T.Zerguerras

laboratoire commun CEA/DSM

- IRFU Saclay
 - F.Druillole, A.Gillibert, E.C.Pollacco
- K.U. Leuven
 - R.Raabe, S.Sambi
- U de Santiago de Compostela
 - H.Alvarez-Pol, J.Benlliure, M.Caamaño, D.Cortina-Gil, B.Fernandez-Dominguez
- Funding partners:

irfu

saclay

16