

VMM1

BROOKHAVEN

An ASIC for Micropattern Detectors - Preliminary Results -

<u>Gianluigi De Geronimo</u>, Jack Fried, Shaorui Li, Jessica Metcalfe^{*}

Neena Nambiar, Emerson Vernon, and Venetios Polychronakos

Brookhaven National Laboratory - *CERN

RD51 - SUNY - October 2012

ATLAS Muon Spectrometer upgrade

VMM ASIC family

VMM - ASIC family for ATLAS Muon Spectrometer upgrade *MICROMEGAS and TGC*

- VMM1 architecture and results
- VMM2 plans

- 200pF (few pF to nF), dual polarity, adj. gain (0.11 to 2 pC), adj. peaktime (25-200 ns), DDF
- discriminator with <u>sub-hysteresis</u> and neighboring (channel and chip)
- address of first event in real time at dedicated output (ART)
- direct timing outputs: time-over-threshold or time-to-peak (for TGC)
- <u>multi-phase peak and time detector</u>
- multiplexing with sparse readout and smart token passing (channel and chip)
- threshold and pulse generators, analog monitors, channel mask, temperature sensor, 600mV BGR, 600mV LVDS
- power 4.5 mW/ch, size 6 x 8.4 mm², process IBM CMOS 130nm 1.2V

Gain and energy resolution

ENC vs input capacitance

DDF - higher analog dynamic range

see G. De Geronimo and S. Li, TNS 58, Oct. 2011

Sub-hysteresis discrimination

Comparator input stage

Positive feedback

- high speed at low V_{i+}-V_{i-}
- hysteresis set NMOS ratio sets minimum detectable

Sub hysteresis

- 1 set window lower
- 2 raise window after trigger switch NMOS ratio hold until triggers back

- limit reduced to overlap
- no action on input or threshold signals

Multi-phase peak detection

- 2 Peak-detect (> threshold)
- only M_P is enabled
- pulse tracked and peak held at capacitor
- peak-found from comparator (timing)

- 1 Track (< threshold)
- M_P and M_N enabled
- pulse tracked at hold capacitor

- amplifier reused as buffer, high drive capability
- amplifier offset canceled, rail-to-rail enabled
- some pile-up rejection

Peak measurements

Large amplitude

Small amplitude

from external buffers

Timing measurements

Output pulse amplitude [V]

- sub-ns timing
- ns time walk (can be calibrated)

disagreement with theor. due to effective peaktime

- very low time-walk
- high timing resolution

G. De Geronimo, in "Medical Imaging" by Iniewski

Direct timing

Direct timing

ToT and TtP

- dedicated output for each channel
- available as ToT or TtP (time-to-peak)

Amplitude measurements

Linearity

Channel uniformity

• within 2% for ~ 1 V full swing

- peak dispersion includes baseline
- threshold dispersion 8.8 mV rms requires improved matching and/or larger trimming range (currently 15 mV)

ART and Neighboring

Two chips (a,b) and one channel exceeding threshold (64 in chip a)

Beam tests at CERN - setup

T1-8; S=10x10cm²; p=0.4mm; dg=5mm; gG=10⁴; Ar-CO₂93-7; v_d=47um/ns; Elx=APV25; daq=SRS

Beam tests at CERN - preliminary results

Track Slope Resolution as a function of angle

15

Plans for VMM2

- fixes, higher gain setting, lower gain setting (5pC)
- external trigger
- 6-bit peak detector and digitizer (PDAD) for direct timing
- 10-bit 5MS/s ADCs per channel and FIFO fully digital IOs, derandomization, simultaneous measurement and readout
 counter for coarse timing

- VMM is an ASIC family for the ATLAS Muon Spectrometer upgrade (MICROMEGAS AND TGC)
- VMM1 has been developed and tested, with results in good agreement with the design. Main issues are charge amplifier compensation and large leakage from ESD. Preliminary test beam results at CERN are promising
- VMM2 (in design) will integrate a number of improvements for simultaneous measurement and readout

Acknowledgment

Ken A. Johns, Sarah L. Jones (University of Arizona, USA)

Nachman Lupu (Technion Haifa, Israel)

Howard Gordon and Craig Woody (BNL, USA)

ATLAS review team (J. Oliver, M. Newcomer, R. Richter, P. Farthouat)

Backup slides

Dual polarity charge amplifier

ESD protection - issue: excessive leakage (few nA)

Front-end voltage amplifier

fast response to positive charge

switchable compensation*issue: unstable when set for large caps*

Multi-phase peak detection

ENC and timing coefficients for various shapers

G. De Geronimo, in "Medical Imaging" by Iniewski

