APV and AMORE, test beam and laboratory data analysis

on behalf of Lari KOPONEN *HIP and Aalto University*

All the contributes have been fundamental.

Starting point

Fragmentation of the process with relative outputs

PEDESTAL ROOT FILE (for pedestal run)

(101 pedestarran)

PEDESTAL ROOT FILE (for pedestal run)

(101 pedestarran)

Zero Suppressed Data (for pedestal run)

MaxCharge.MaxCharge ntemp Entries 153240 Mean 561.5 ± 1.022 RMS $\textbf{399.9} \pm \textbf{0.7224}$ 7000 Integral 1.532e+005 6000 5000 4000 3000 2000 1000 0ò 1 1 1 1 1 200 400 600 800 1000 1200 1400 1600 1800 MaxCharge.MaxCharge

Default Plot and histograms

Having a TTree the data, event by event are available and additional analysis can be done

Example of post processing analysis: pillars in μ megas for a Fe55 run

sqrt(pow(fmod(y_local+259.035,2.5),2)+pow(fmod(x_local+260.15,2.5),2))

The donkey test

I (Eraldo) took data with DATE and I tried to do my specific analysis/plots using ROOT on the TTree of the root output files produced by AMORE.

I don't know absolutely nothing about the AMORE-SRS code. I wanted to check the feasibility of doing what I needed directly in ROOT.

I'm not an expert of ROOT but, MakeClass and MakeSelector provide me automatically the structure of the code that I need for looping the events...

Spectrum and Correlation

Spectrum vs Cluster Size

Uniformity Test

Uniformity Test

HITS

CHARGE

10/2/2012

Stability Test

One open question...

- Calibration pulse:
- We tried once but we had to retry because the output was completely non-sense

Calibration Pulse... something wrong on the data that we took

Value

Pulsing different numbers of channels

Calibration using the source signal (mistake by definition but...)

Documentation about the Lari activity available

- 📕 codebase_doc.pdf
- 📕 documentation.pdf
- 📕 installation_doc.pdf
- 📕 output_doc.pdf
- 📕 usage_doc.pdf
- zerosuppressionfile_doc.pdf

Example Code for analysis available

Projection of the signal versus time

10/2/2012