Report on test of Eltos micromegas boards

Maria Hoffmann on behalf of the MAMMA collaboration Niels Bohr Institute 10th RD51 Collaboration meeting

Overview

Five boards produced by Eltos

- Resistive bulks, *xy* readout
- Active area: 9×9 cm²
- Pitch: 250 µm
- Strip width: $x 150 \mu m$, $y 50 \mu m$

Characterization of chambers

- Basic functionality
 - detector response from ⁵⁵Fe source
- Homogeneity of response
 - surface scan with collimated Cu X-rays
- Gain measurement

Compared with a CERN produced chamber

Setup

Detector configuration

- HV drift/strips: -300/500
- Mesh grounded
- Gas mix: 93% Ar, 7% CO_2

Electronics

- All strips in parallel connected to charge pre-amp
 - 250 ns integration time, gain \sim 20 mV/fC
- Connected to Amptek MCA

Basic functionality – response from 55 Fe

Example of good

⁵⁵Fe spectrum

200

Entries 120

100

50

First chamber: good ⁵⁵Fe spectra only from the periphery

- Indistinct spectra from the central part of the chamber
- \rightarrow pillars detached in the center
- Same effect seen in three other boards

Top right corner

T8 chamber

Functional chamber – response from 55 Fe

One chamber functional

- Reasonable 55 Fe spectra from all areas of the chamber
- Fairly large variations seen in shape and peak position
 - More tests to characterize performance
 - homogeneity
 - gain

Status report on Eltos micromegas boards

Functional chamber - setup

Homogeneity of Eltos3

- Cu X-ray gun, 8 keV, collimator ~2 mm²
- Matrix of 5 values in *y* and 10 in *x* chosen
- Each point exposed to radiation, pulse height spectra recorded
- Homogeneity determined by comparing the spectra

Functional chamber - homogeneity

Compare to CERN produced chamber

Referred to as the Frascati chamber

• Performance known to be of good quality

Homogeneity of Eltos3 vs. Frascati

- Peak positions relative to reference value (in %)
- Frascati chamber more uniform

Gain of Eltos3 vs. Frascati

Study gain as function of HV

- X-rays fixed at *x*=45mm, *y*=50mm
- Gain calculated from detector current and rate
 - larger collimator, area exposed ~10 mm²
 - current monitored from HV supply

- Similar behavior of the chambers
- Stable operation lost for HV > 560 due to sparking
- Difference in gain at lower HV explained by different resistivity of the strips

Conclusion on Eltos boards

Four boards dysfunctional

• Pillars not attached properly

One chamber functional

- Gain measured
 - similar behavior as Frascati chamber
- Homogeneity estimated
 - Eltos3 less uniform than Frascati chamber
- Performance of chamber overall seems reasonable, however, the fluctuation in the response indicates local problems with attachment of pillars

Explanation from Rui

• Pillars detached from underlying surface, most likely due to the underexposure of the coverlay during the pillar production

Backup

Spectra

Status report on Eltos micromegas boards

Spectra

Spectra

Eltos3 peak positions

Frascati peak positions

